numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/dptt01.f 4366B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
*> \brief \b DPTT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DPTT01( N, D, E, DF, EF, WORK, RESID )
*
*       .. Scalar Arguments ..
*       INTEGER            N
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * ), DF( * ), E( * ), EF( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DPTT01 reconstructs a tridiagonal matrix A from its L*D*L'
*> factorization and computes the residual
*>    norm(L*D*L' - A) / ( n * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The n diagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N-1)
*>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] DF
*> \verbatim
*>          DF is DOUBLE PRECISION array, dimension (N)
*>          The n diagonal elements of the factor L from the L*D*L'
*>          factorization of A.
*> \endverbatim
*>
*> \param[in] EF
*> \verbatim
*>          EF is DOUBLE PRECISION array, dimension (N-1)
*>          The (n-1) subdiagonal elements of the factor L from the
*>          L*D*L' factorization of A.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          norm(L*D*L' - A) / (n * norm(A) * EPS)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
*  =====================================================================
      SUBROUTINE DPTT01( N, D, E, DF, EF, WORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), DF( * ), E( * ), EF( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   ANORM, DE, EPS
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Construct the difference L*D*L' - A.
*
      WORK( 1 ) = DF( 1 ) - D( 1 )
      DO 10 I = 1, N - 1
         DE = DF( I )*EF( I )
         WORK( N+I ) = DE - E( I )
         WORK( 1+I ) = DE*EF( I ) + DF( I+1 ) - D( I+1 )
   10 CONTINUE
*
*     Compute the 1-norms of the tridiagonal matrices A and WORK.
*
      IF( N.EQ.1 ) THEN
         ANORM = D( 1 )
         RESID = ABS( WORK( 1 ) )
      ELSE
         ANORM = MAX( D( 1 )+ABS( E( 1 ) ), D( N )+ABS( E( N-1 ) ) )
         RESID = MAX( ABS( WORK( 1 ) )+ABS( WORK( N+1 ) ),
     $           ABS( WORK( N ) )+ABS( WORK( 2*N-1 ) ) )
         DO 20 I = 2, N - 1
            ANORM = MAX( ANORM, D( I )+ABS( E( I ) )+ABS( E( I-1 ) ) )
            RESID = MAX( RESID, ABS( WORK( I ) )+ABS( WORK( N+I-1 ) )+
     $              ABS( WORK( N+I ) ) )
   20    CONTINUE
      END IF
*
*     Compute norm(L*D*L' - A) / (n * norm(A) * EPS)
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of DPTT01
*
      END