numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/dqrt14.f | 7041B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
*> \brief \b DQRT14 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * DOUBLE PRECISION FUNCTION DQRT14( TRANS, M, N, NRHS, A, LDA, X, * LDX, WORK, LWORK ) * * .. Scalar Arguments .. * CHARACTER TRANS * INTEGER LDA, LDX, LWORK, M, N, NRHS * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), WORK( LWORK ), X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DQRT14 checks whether X is in the row space of A or A'. It does so *> by scaling both X and A such that their norms are in the range *> [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X] *> (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'), *> and returning the norm of the trailing triangle, scaled by *> MAX(M,N,NRHS)*eps. *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> = 'N': No transpose, check for X in the row space of A *> = 'T': Transpose, check for X in the row space of A'. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of X. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> The M-by-N matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. *> \endverbatim *> *> \param[in] X *> \verbatim *> X is DOUBLE PRECISION array, dimension (LDX,NRHS) *> If TRANS = 'N', the N-by-NRHS matrix X. *> IF TRANS = 'T', the M-by-NRHS matrix X. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> length of workspace array required *> If TRANS = 'N', LWORK >= (M+NRHS)*(N+2); *> if TRANS = 'T', LWORK >= (N+NRHS)*(M+2). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_lin * * ===================================================================== DOUBLE PRECISION FUNCTION DQRT14( TRANS, M, N, NRHS, A, LDA, X, $ LDX, WORK, LWORK ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER TRANS INTEGER LDA, LDX, LWORK, M, N, NRHS * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), WORK( LWORK ), X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. LOGICAL TPSD INTEGER I, INFO, J, LDWORK DOUBLE PRECISION ANRM, ERR, XNRM * .. * .. Local Arrays .. DOUBLE PRECISION RWORK( 1 ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL LSAME, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DGELQ2, DGEQR2, DLACPY, DLASCL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. Executable Statements .. * DQRT14 = ZERO IF( LSAME( TRANS, 'N' ) ) THEN LDWORK = M + NRHS TPSD = .FALSE. IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN CALL XERBLA( 'DQRT14', 10 ) RETURN ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RETURN END IF ELSE IF( LSAME( TRANS, 'T' ) ) THEN LDWORK = M TPSD = .TRUE. IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN CALL XERBLA( 'DQRT14', 10 ) RETURN ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN RETURN END IF ELSE CALL XERBLA( 'DQRT14', 1 ) RETURN END IF * * Copy and scale A * CALL DLACPY( 'All', M, N, A, LDA, WORK, LDWORK ) ANRM = DLANGE( 'M', M, N, WORK, LDWORK, RWORK ) IF( ANRM.NE.ZERO ) $ CALL DLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO ) * * Copy X or X' into the right place and scale it * IF( TPSD ) THEN * * Copy X into columns n+1:n+nrhs of work * CALL DLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ), $ LDWORK ) XNRM = DLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK, $ RWORK ) IF( XNRM.NE.ZERO ) $ CALL DLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS, $ WORK( N*LDWORK+1 ), LDWORK, INFO ) * * Compute QR factorization of X * CALL DGEQR2( M, N+NRHS, WORK, LDWORK, $ WORK( LDWORK*( N+NRHS )+1 ), $ WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ), $ INFO ) * * Compute largest entry in upper triangle of * work(n+1:m,n+1:n+nrhs) * ERR = ZERO DO 20 J = N + 1, N + NRHS DO 10 I = N + 1, MIN( M, J ) ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) ) 10 CONTINUE 20 CONTINUE * ELSE * * Copy X' into rows m+1:m+nrhs of work * DO 40 I = 1, N DO 30 J = 1, NRHS WORK( M+J+( I-1 )*LDWORK ) = X( I, J ) 30 CONTINUE 40 CONTINUE * XNRM = DLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK ) IF( XNRM.NE.ZERO ) $ CALL DLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ), $ LDWORK, INFO ) * * Compute LQ factorization of work * CALL DGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ), $ WORK( LDWORK*( N+1 )+1 ), INFO ) * * Compute largest entry in lower triangle in * work(m+1:m+nrhs,m+1:n) * ERR = ZERO DO 60 J = M + 1, N DO 50 I = J, LDWORK ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) ) 50 CONTINUE 60 CONTINUE * END IF * DQRT14 = ERR / ( DBLE( MAX( M, N, NRHS ) )*DLAMCH( 'Epsilon' ) ) * RETURN * * End of DQRT14 * END