numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/dqrt15.f | 8354B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
*> \brief \b DQRT15 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S, * RANK, NORMA, NORMB, ISEED, WORK, LWORK ) * * .. Scalar Arguments .. * INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE * DOUBLE PRECISION NORMA, NORMB * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( LWORK ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DQRT15 generates a matrix with full or deficient rank and of various *> norms. *> \endverbatim * * Arguments: * ========== * *> \param[in] SCALE *> \verbatim *> SCALE is INTEGER *> SCALE = 1: normally scaled matrix *> SCALE = 2: matrix scaled up *> SCALE = 3: matrix scaled down *> \endverbatim *> *> \param[in] RKSEL *> \verbatim *> RKSEL is INTEGER *> RKSEL = 1: full rank matrix *> RKSEL = 2: rank-deficient matrix *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of A. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of B. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> The M-by-N matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. *> \endverbatim *> *> \param[out] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDB, NRHS) *> A matrix that is in the range space of matrix A. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. *> \endverbatim *> *> \param[out] S *> \verbatim *> S is DOUBLE PRECISION array, dimension MIN(M,N) *> Singular values of A. *> \endverbatim *> *> \param[out] RANK *> \verbatim *> RANK is INTEGER *> number of nonzero singular values of A. *> \endverbatim *> *> \param[out] NORMA *> \verbatim *> NORMA is DOUBLE PRECISION *> one-norm of A. *> \endverbatim *> *> \param[out] NORMB *> \verbatim *> NORMB is DOUBLE PRECISION *> one-norm of B. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is integer array, dimension (4) *> seed for random number generator. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> length of work space required. *> LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S, $ RANK, NORMA, NORMB, ISEED, WORK, LWORK ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE DOUBLE PRECISION NORMA, NORMB * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( LWORK ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO, SVMIN PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, $ SVMIN = 0.1D0 ) * .. * .. Local Scalars .. INTEGER INFO, J, MN DOUBLE PRECISION BIGNUM, EPS, SMLNUM, TEMP * .. * .. Local Arrays .. DOUBLE PRECISION DUMMY( 1 ) * .. * .. External Functions .. DOUBLE PRECISION DASUM, DLAMCH, DLANGE, DLARND, DNRM2 EXTERNAL DASUM, DLAMCH, DLANGE, DLARND, DNRM2 * .. * .. External Subroutines .. EXTERNAL DGEMM, DLAORD, DLARF, DLARNV, DLAROR, DLASCL, $ DLASET, DSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Executable Statements .. * MN = MIN( M, N ) IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN CALL XERBLA( 'DQRT15', 16 ) RETURN END IF * SMLNUM = DLAMCH( 'Safe minimum' ) BIGNUM = ONE / SMLNUM EPS = DLAMCH( 'Epsilon' ) SMLNUM = ( SMLNUM / EPS ) / EPS BIGNUM = ONE / SMLNUM * * Determine rank and (unscaled) singular values * IF( RKSEL.EQ.1 ) THEN RANK = MN ELSE IF( RKSEL.EQ.2 ) THEN RANK = ( 3*MN ) / 4 DO 10 J = RANK + 1, MN S( J ) = ZERO 10 CONTINUE ELSE CALL XERBLA( 'DQRT15', 2 ) END IF * IF( RANK.GT.0 ) THEN * * Nontrivial case * S( 1 ) = ONE DO 30 J = 2, RANK 20 CONTINUE TEMP = DLARND( 1, ISEED ) IF( TEMP.GT.SVMIN ) THEN S( J ) = ABS( TEMP ) ELSE GO TO 20 END IF 30 CONTINUE CALL DLAORD( 'Decreasing', RANK, S, 1 ) * * Generate 'rank' columns of a random orthogonal matrix in A * CALL DLARNV( 2, ISEED, M, WORK ) CALL DSCAL( M, ONE / DNRM2( M, WORK, 1 ), WORK, 1 ) CALL DLASET( 'Full', M, RANK, ZERO, ONE, A, LDA ) CALL DLARF( 'Left', M, RANK, WORK, 1, TWO, A, LDA, $ WORK( M+1 ) ) * * workspace used: m+mn * * Generate consistent rhs in the range space of A * CALL DLARNV( 2, ISEED, RANK*NRHS, WORK ) CALL DGEMM( 'No transpose', 'No transpose', M, NRHS, RANK, ONE, $ A, LDA, WORK, RANK, ZERO, B, LDB ) * * work space used: <= mn *nrhs * * generate (unscaled) matrix A * DO 40 J = 1, RANK CALL DSCAL( M, S( J ), A( 1, J ), 1 ) 40 CONTINUE IF( RANK.LT.N ) $ CALL DLASET( 'Full', M, N-RANK, ZERO, ZERO, A( 1, RANK+1 ), $ LDA ) CALL DLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED, $ WORK, INFO ) * ELSE * * work space used 2*n+m * * Generate null matrix and rhs * DO 50 J = 1, MN S( J ) = ZERO 50 CONTINUE CALL DLASET( 'Full', M, N, ZERO, ZERO, A, LDA ) CALL DLASET( 'Full', M, NRHS, ZERO, ZERO, B, LDB ) * END IF * * Scale the matrix * IF( SCALE.NE.1 ) THEN NORMA = DLANGE( 'Max', M, N, A, LDA, DUMMY ) IF( NORMA.NE.ZERO ) THEN IF( SCALE.EQ.2 ) THEN * * matrix scaled up * CALL DLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A, $ LDA, INFO ) CALL DLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S, $ MN, INFO ) CALL DLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B, $ LDB, INFO ) ELSE IF( SCALE.EQ.3 ) THEN * * matrix scaled down * CALL DLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A, $ LDA, INFO ) CALL DLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S, $ MN, INFO ) CALL DLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B, $ LDB, INFO ) ELSE CALL XERBLA( 'DQRT15', 1 ) RETURN END IF END IF END IF * NORMA = DASUM( MN, S, 1 ) NORMB = DLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY ) * RETURN * * End of DQRT15 * END