numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/drqt03.f | 7891B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
*> \brief \b DRQT03 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DRQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, * RWORK, RESULT ) * * .. Scalar Arguments .. * INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. * DOUBLE PRECISION AF( LDA, * ), C( LDA, * ), CC( LDA, * ), * $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ), * $ WORK( LWORK ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DRQT03 tests DORMRQ, which computes Q*C, Q'*C, C*Q or C*Q'. *> *> DRQT03 compares the results of a call to DORMRQ with the results of *> forming Q explicitly by a call to DORGRQ and then performing matrix *> multiplication by a call to DGEMM. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows or columns of the matrix C; C is n-by-m if *> Q is applied from the left, or m-by-n if Q is applied from *> the right. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the orthogonal matrix Q. N >= 0. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The number of elementary reflectors whose product defines the *> orthogonal matrix Q. N >= K >= 0. *> \endverbatim *> *> \param[in] AF *> \verbatim *> AF is DOUBLE PRECISION array, dimension (LDA,N) *> Details of the RQ factorization of an m-by-n matrix, as *> returned by DGERQF. See SGERQF for further details. *> \endverbatim *> *> \param[out] C *> \verbatim *> C is DOUBLE PRECISION array, dimension (LDA,N) *> \endverbatim *> *> \param[out] CC *> \verbatim *> CC is DOUBLE PRECISION array, dimension (LDA,N) *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is DOUBLE PRECISION array, dimension (LDA,N) *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the arrays AF, C, CC, and Q. *> \endverbatim *> *> \param[in] TAU *> \verbatim *> TAU is DOUBLE PRECISION array, dimension (min(M,N)) *> The scalar factors of the elementary reflectors corresponding *> to the RQ factorization in AF. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of WORK. LWORK must be at least M, and should be *> M*NB, where NB is the blocksize for this environment. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (M) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (4) *> The test ratios compare two techniques for multiplying a *> random matrix C by an n-by-n orthogonal matrix Q. *> RESULT(1) = norm( Q*C - Q*C ) / ( N * norm(C) * EPS ) *> RESULT(2) = norm( C*Q - C*Q ) / ( N * norm(C) * EPS ) *> RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS ) *> RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DRQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, $ RWORK, RESULT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. DOUBLE PRECISION AF( LDA, * ), C( LDA, * ), CC( LDA, * ), $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ), $ WORK( LWORK ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) DOUBLE PRECISION ROGUE PARAMETER ( ROGUE = -1.0D+10 ) * .. * .. Local Scalars .. CHARACTER SIDE, TRANS INTEGER INFO, ISIDE, ITRANS, J, MC, MINMN, NC DOUBLE PRECISION CNORM, EPS, RESID * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL LSAME, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DGEMM, DLACPY, DLARNV, DLASET, DORGRQ, DORMRQ * .. * .. Local Arrays .. INTEGER ISEED( 4 ) * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEED / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * EPS = DLAMCH( 'Epsilon' ) MINMN = MIN( M, N ) * * Quick return if possible * IF( MINMN.EQ.0 ) THEN RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO RESULT( 3 ) = ZERO RESULT( 4 ) = ZERO RETURN END IF * * Copy the last k rows of the factorization to the array Q * CALL DLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA ) IF( K.GT.0 .AND. N.GT.K ) $ CALL DLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA, $ Q( N-K+1, 1 ), LDA ) IF( K.GT.1 ) $ CALL DLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA, $ Q( N-K+2, N-K+1 ), LDA ) * * Generate the n-by-n matrix Q * SRNAMT = 'DORGRQ' CALL DORGRQ( N, N, K, Q, LDA, TAU( MINMN-K+1 ), WORK, LWORK, $ INFO ) * DO 30 ISIDE = 1, 2 IF( ISIDE.EQ.1 ) THEN SIDE = 'L' MC = N NC = M ELSE SIDE = 'R' MC = M NC = N END IF * * Generate MC by NC matrix C * DO 10 J = 1, NC CALL DLARNV( 2, ISEED, MC, C( 1, J ) ) 10 CONTINUE CNORM = DLANGE( '1', MC, NC, C, LDA, RWORK ) IF( CNORM.EQ.0.0D0 ) $ CNORM = ONE * DO 20 ITRANS = 1, 2 IF( ITRANS.EQ.1 ) THEN TRANS = 'N' ELSE TRANS = 'T' END IF * * Copy C * CALL DLACPY( 'Full', MC, NC, C, LDA, CC, LDA ) * * Apply Q or Q' to C * SRNAMT = 'DORMRQ' IF( K.GT.0 ) $ CALL DORMRQ( SIDE, TRANS, MC, NC, K, AF( M-K+1, 1 ), LDA, $ TAU( MINMN-K+1 ), CC, LDA, WORK, LWORK, $ INFO ) * * Form explicit product and subtract * IF( LSAME( SIDE, 'L' ) ) THEN CALL DGEMM( TRANS, 'No transpose', MC, NC, MC, -ONE, Q, $ LDA, C, LDA, ONE, CC, LDA ) ELSE CALL DGEMM( 'No transpose', TRANS, MC, NC, NC, -ONE, C, $ LDA, Q, LDA, ONE, CC, LDA ) END IF * * Compute error in the difference * RESID = DLANGE( '1', MC, NC, CC, LDA, RWORK ) RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID / $ ( DBLE( MAX( 1, N ) )*CNORM*EPS ) * 20 CONTINUE 30 CONTINUE * RETURN * * End of DRQT03 * END