numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/dsyt01_rook.f 5930B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
*> \brief \b DSYT01_ROOK
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DSYT01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
*                          RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDA, LDAFAC, LDC, N
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       DOUBLE PRECISION   A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
*      $                   RWORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DSYT01_ROOK reconstructs a symmetric indefinite matrix A from its
*> block L*D*L' or U*D*U' factorization and computes the residual
*>    norm( C - A ) / ( N * norm(A) * EPS ),
*> where C is the reconstructed matrix and EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          symmetric matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          The original symmetric matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*>          AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
*>          The factored form of the matrix A.  AFAC contains the block
*>          diagonal matrix D and the multipliers used to obtain the
*>          factor L or U from the block L*D*L' or U*D*U' factorization
*>          as computed by DSYTRF_ROOK.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*>          LDAFAC is INTEGER
*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices from DSYTRF_ROOK.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*>          C is DOUBLE PRECISION array, dimension (LDC,N)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C.  LDC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
*  =====================================================================
      SUBROUTINE DSYT01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
     $                   LDC, RWORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDAFAC, LDC, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
     $                   RWORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
      DOUBLE PRECISION   ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANSY
      EXTERNAL           LSAME, DLAMCH, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASET, DLAVSY_ROOK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK )
*
*     Initialize C to the identity matrix.
*
      CALL DLASET( 'Full', N, N, ZERO, ONE, C, LDC )
*
*     Call DLAVSY_ROOK to form the product D * U' (or D * L' ).
*
      CALL DLAVSY_ROOK( UPLO, 'Transpose', 'Non-unit', N, N, AFAC,
     $              LDAFAC, IPIV, C, LDC, INFO )
*
*     Call DLAVSY_ROOK again to multiply by U (or L ).
*
      CALL DLAVSY_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
     $              LDAFAC, IPIV, C, LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 20 J = 1, N
            DO 10 I = 1, J
               C( I, J ) = C( I, J ) - A( I, J )
   10       CONTINUE
   20    CONTINUE
      ELSE
         DO 40 J = 1, N
            DO 30 I = J, N
               C( I, J ) = C( I, J ) - A( I, J )
   30       CONTINUE
   40    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = DLANSY( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of DSYT01_ROOK
*
      END