numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/schkgb.f | 25309B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
*> \brief \b SCHKGB * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS, * NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B, * X, XACT, WORK, RWORK, IWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER LA, LAFAC, NM, NN, NNB, NNS, NOUT * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ), * $ NVAL( * ) * REAL A( * ), AFAC( * ), B( * ), RWORK( * ), * $ WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SCHKGB tests SGBTRF, -TRS, -RFS, and -CON *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NM *> \verbatim *> NM is INTEGER *> The number of values of M contained in the vector MVAL. *> \endverbatim *> *> \param[in] MVAL *> \verbatim *> MVAL is INTEGER array, dimension (NM) *> The values of the matrix row dimension M. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] NNB *> \verbatim *> NNB is INTEGER *> The number of values of NB contained in the vector NBVAL. *> \endverbatim *> *> \param[in] NBVAL *> \verbatim *> NBVAL is INTEGER array, dimension (NNB) *> The values of the blocksize NB. *> \endverbatim *> *> \param[in] NNS *> \verbatim *> NNS is INTEGER *> The number of values of NRHS contained in the vector NSVAL. *> \endverbatim *> *> \param[in] NSVAL *> \verbatim *> NSVAL is INTEGER array, dimension (NNS) *> The values of the number of right hand sides NRHS. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is REAL array, dimension (LA) *> \endverbatim *> *> \param[in] LA *> \verbatim *> LA is INTEGER *> The length of the array A. LA >= (KLMAX+KUMAX+1)*NMAX *> where KLMAX is the largest entry in the local array KLVAL, *> KUMAX is the largest entry in the local array KUVAL and *> NMAX is the largest entry in the input array NVAL. *> \endverbatim *> *> \param[out] AFAC *> \verbatim *> AFAC is REAL array, dimension (LAFAC) *> \endverbatim *> *> \param[in] LAFAC *> \verbatim *> LAFAC is INTEGER *> The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX *> where KLMAX is the largest entry in the local array KLVAL, *> KUMAX is the largest entry in the local array KUVAL and *> NMAX is the largest entry in the input array NVAL. *> \endverbatim *> *> \param[out] B *> \verbatim *> B is REAL array, dimension (NMAX*NSMAX) *> where NSMAX is the largest entry in NSVAL. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is REAL array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is REAL array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension *> (NMAX*max(3,NSMAX,NMAX)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension *> (NMAX+2*NSMAX) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (2*NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_lin * * ===================================================================== SUBROUTINE SCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS, $ NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B, $ X, XACT, WORK, RWORK, IWORK, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER LA, LAFAC, NM, NN, NNB, NNS, NOUT REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ), $ NVAL( * ) REAL A( * ), AFAC( * ), B( * ), RWORK( * ), $ WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) INTEGER NTYPES, NTESTS PARAMETER ( NTYPES = 8, NTESTS = 7 ) INTEGER NBW, NTRAN PARAMETER ( NBW = 4, NTRAN = 3 ) * .. * .. Local Scalars .. LOGICAL TRFCON, ZEROT CHARACTER DIST, NORM, TRANS, TYPE, XTYPE CHARACTER*3 PATH INTEGER I, I1, I2, IKL, IKU, IM, IMAT, IN, INB, INFO, $ IOFF, IRHS, ITRAN, IZERO, J, K, KL, KOFF, KU, $ LDA, LDAFAC, LDB, M, MODE, N, NB, NERRS, NFAIL, $ NIMAT, NKL, NKU, NRHS, NRUN REAL AINVNM, ANORM, ANORMI, ANORMO, CNDNUM, RCOND, $ RCONDC, RCONDI, RCONDO * .. * .. Local Arrays .. CHARACTER TRANSS( NTRAN ) INTEGER ISEED( 4 ), ISEEDY( 4 ), KLVAL( NBW ), $ KUVAL( NBW ) REAL RESULT( NTESTS ) * .. * .. External Functions .. REAL SGET06, SLANGB, SLANGE EXTERNAL SGET06, SLANGB, SLANGE * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, SCOPY, SERRGE, SGBCON, $ SGBRFS, SGBT01, SGBT02, SGBT05, SGBTRF, SGBTRS, $ SGET04, SLACPY, SLARHS, SLASET, SLATB4, SLATMS, $ XLAENV * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / , $ TRANSS / 'N', 'T', 'C' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Single precision' PATH( 2: 3 ) = 'GB' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL SERRGE( PATH, NOUT ) INFOT = 0 CALL XLAENV( 2, 2 ) * * Initialize the first value for the lower and upper bandwidths. * KLVAL( 1 ) = 0 KUVAL( 1 ) = 0 * * Do for each value of M in MVAL * DO 160 IM = 1, NM M = MVAL( IM ) * * Set values to use for the lower bandwidth. * KLVAL( 2 ) = M + ( M+1 ) / 4 * * KLVAL( 2 ) = MAX( M-1, 0 ) * KLVAL( 3 ) = ( 3*M-1 ) / 4 KLVAL( 4 ) = ( M+1 ) / 4 * * Do for each value of N in NVAL * DO 150 IN = 1, NN N = NVAL( IN ) XTYPE = 'N' * * Set values to use for the upper bandwidth. * KUVAL( 2 ) = N + ( N+1 ) / 4 * * KUVAL( 2 ) = MAX( N-1, 0 ) * KUVAL( 3 ) = ( 3*N-1 ) / 4 KUVAL( 4 ) = ( N+1 ) / 4 * * Set limits on the number of loop iterations. * NKL = MIN( M+1, 4 ) IF( N.EQ.0 ) $ NKL = 2 NKU = MIN( N+1, 4 ) IF( M.EQ.0 ) $ NKU = 2 NIMAT = NTYPES IF( M.LE.0 .OR. N.LE.0 ) $ NIMAT = 1 * DO 140 IKL = 1, NKL * * Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This * order makes it easier to skip redundant values for small * values of M. * KL = KLVAL( IKL ) DO 130 IKU = 1, NKU * * Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This * order makes it easier to skip redundant values for * small values of N. * KU = KUVAL( IKU ) * * Check that A and AFAC are big enough to generate this * matrix. * LDA = KL + KU + 1 LDAFAC = 2*KL + KU + 1 IF( ( LDA*N ).GT.LA .OR. ( LDAFAC*N ).GT.LAFAC ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) IF( N*( KL+KU+1 ).GT.LA ) THEN WRITE( NOUT, FMT = 9999 )LA, M, N, KL, KU, $ N*( KL+KU+1 ) NERRS = NERRS + 1 END IF IF( N*( 2*KL+KU+1 ).GT.LAFAC ) THEN WRITE( NOUT, FMT = 9998 )LAFAC, M, N, KL, KU, $ N*( 2*KL+KU+1 ) NERRS = NERRS + 1 END IF GO TO 130 END IF * DO 120 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 120 * * Skip types 2, 3, or 4 if the matrix size is too * small. * ZEROT = IMAT.GE.2 .AND. IMAT.LE.4 IF( ZEROT .AND. N.LT.IMAT-1 ) $ GO TO 120 * IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN * * Set up parameters with SLATB4 and generate a * test matrix with SLATMS. * CALL SLATB4( PATH, IMAT, M, N, TYPE, KL, KU, $ ANORM, MODE, CNDNUM, DIST ) * KOFF = MAX( 1, KU+2-N ) DO 20 I = 1, KOFF - 1 A( I ) = ZERO 20 CONTINUE SRNAMT = 'SLATMS' CALL SLATMS( M, N, DIST, ISEED, TYPE, RWORK, $ MODE, CNDNUM, ANORM, KL, KU, 'Z', $ A( KOFF ), LDA, WORK, INFO ) * * Check the error code from SLATMS. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'SLATMS', INFO, 0, ' ', M, $ N, KL, KU, -1, IMAT, NFAIL, $ NERRS, NOUT ) GO TO 120 END IF ELSE IF( IZERO.GT.0 ) THEN * * Use the same matrix for types 3 and 4 as for * type 2 by copying back the zeroed out column. * CALL SCOPY( I2-I1+1, B, 1, A( IOFF+I1 ), 1 ) END IF * * For types 2, 3, and 4, zero one or more columns of * the matrix to test that INFO is returned correctly. * IZERO = 0 IF( ZEROT ) THEN IF( IMAT.EQ.2 ) THEN IZERO = 1 ELSE IF( IMAT.EQ.3 ) THEN IZERO = MIN( M, N ) ELSE IZERO = MIN( M, N ) / 2 + 1 END IF IOFF = ( IZERO-1 )*LDA IF( IMAT.LT.4 ) THEN * * Store the column to be zeroed out in B. * I1 = MAX( 1, KU+2-IZERO ) I2 = MIN( KL+KU+1, KU+1+( M-IZERO ) ) CALL SCOPY( I2-I1+1, A( IOFF+I1 ), 1, B, 1 ) * DO 30 I = I1, I2 A( IOFF+I ) = ZERO 30 CONTINUE ELSE DO 50 J = IZERO, N DO 40 I = MAX( 1, KU+2-J ), $ MIN( KL+KU+1, KU+1+( M-J ) ) A( IOFF+I ) = ZERO 40 CONTINUE IOFF = IOFF + LDA 50 CONTINUE END IF END IF * * These lines, if used in place of the calls in the * loop over INB, cause the code to bomb on a Sun * SPARCstation. * * ANORMO = SLANGB( 'O', N, KL, KU, A, LDA, RWORK ) * ANORMI = SLANGB( 'I', N, KL, KU, A, LDA, RWORK ) * * Do for each blocksize in NBVAL * DO 110 INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) * * Compute the LU factorization of the band matrix. * IF( M.GT.0 .AND. N.GT.0 ) $ CALL SLACPY( 'Full', KL+KU+1, N, A, LDA, $ AFAC( KL+1 ), LDAFAC ) SRNAMT = 'SGBTRF' CALL SGBTRF( M, N, KL, KU, AFAC, LDAFAC, IWORK, $ INFO ) * * Check error code from SGBTRF. * IF( INFO.NE.IZERO ) $ CALL ALAERH( PATH, 'SGBTRF', INFO, IZERO, $ ' ', M, N, KL, KU, NB, IMAT, $ NFAIL, NERRS, NOUT ) TRFCON = .FALSE. * *+ TEST 1 * Reconstruct matrix from factors and compute * residual. * CALL SGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, $ IWORK, WORK, RESULT( 1 ) ) * * Print information about the tests so far that * did not pass the threshold. * IF( RESULT( 1 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9997 )M, N, KL, KU, NB, $ IMAT, 1, RESULT( 1 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 * * Skip the remaining tests if this is not the * first block size or if M .ne. N. * IF( INB.GT.1 .OR. M.NE.N ) $ GO TO 110 * ANORMO = SLANGB( 'O', N, KL, KU, A, LDA, RWORK ) ANORMI = SLANGB( 'I', N, KL, KU, A, LDA, RWORK ) * IF( INFO.EQ.0 ) THEN * * Form the inverse of A so we can get a good * estimate of CNDNUM = norm(A) * norm(inv(A)). * LDB = MAX( 1, N ) CALL SLASET( 'Full', N, N, ZERO, ONE, WORK, $ LDB ) SRNAMT = 'SGBTRS' CALL SGBTRS( 'No transpose', N, KL, KU, N, $ AFAC, LDAFAC, IWORK, WORK, LDB, $ INFO ) * * Compute the 1-norm condition number of A. * AINVNM = SLANGE( 'O', N, N, WORK, LDB, $ RWORK ) IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCONDO = ONE ELSE RCONDO = ( ONE / ANORMO ) / AINVNM END IF * * Compute the infinity-norm condition number of * A. * AINVNM = SLANGE( 'I', N, N, WORK, LDB, $ RWORK ) IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCONDI = ONE ELSE RCONDI = ( ONE / ANORMI ) / AINVNM END IF ELSE * * Do only the condition estimate if INFO.NE.0. * TRFCON = .TRUE. RCONDO = ZERO RCONDI = ZERO END IF * * Skip the solve tests if the matrix is singular. * IF( TRFCON ) $ GO TO 90 * DO 80 IRHS = 1, NNS NRHS = NSVAL( IRHS ) XTYPE = 'N' * DO 70 ITRAN = 1, NTRAN TRANS = TRANSS( ITRAN ) IF( ITRAN.EQ.1 ) THEN RCONDC = RCONDO NORM = 'O' ELSE RCONDC = RCONDI NORM = 'I' END IF * *+ TEST 2: * Solve and compute residual for op(A) * X = B. * SRNAMT = 'SLARHS' CALL SLARHS( PATH, XTYPE, ' ', TRANS, N, $ N, KL, KU, NRHS, A, LDA, $ XACT, LDB, B, LDB, ISEED, $ INFO ) XTYPE = 'C' CALL SLACPY( 'Full', N, NRHS, B, LDB, X, $ LDB ) * SRNAMT = 'SGBTRS' CALL SGBTRS( TRANS, N, KL, KU, NRHS, AFAC, $ LDAFAC, IWORK, X, LDB, INFO ) * * Check error code from SGBTRS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'SGBTRS', INFO, 0, $ TRANS, N, N, KL, KU, -1, $ IMAT, NFAIL, NERRS, NOUT ) * CALL SLACPY( 'Full', N, NRHS, B, LDB, $ WORK, LDB ) CALL SGBT02( TRANS, M, N, KL, KU, NRHS, A, $ LDA, X, LDB, WORK, LDB, $ RWORK, RESULT( 2 ) ) * *+ TEST 3: * Check solution from generated exact * solution. * CALL SGET04( N, NRHS, X, LDB, XACT, LDB, $ RCONDC, RESULT( 3 ) ) * *+ TESTS 4, 5, 6: * Use iterative refinement to improve the * solution. * SRNAMT = 'SGBRFS' CALL SGBRFS( TRANS, N, KL, KU, NRHS, A, $ LDA, AFAC, LDAFAC, IWORK, B, $ LDB, X, LDB, RWORK, $ RWORK( NRHS+1 ), WORK, $ IWORK( N+1 ), INFO ) * * Check error code from SGBRFS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'SGBRFS', INFO, 0, $ TRANS, N, N, KL, KU, NRHS, $ IMAT, NFAIL, NERRS, NOUT ) * CALL SGET04( N, NRHS, X, LDB, XACT, LDB, $ RCONDC, RESULT( 4 ) ) CALL SGBT05( TRANS, N, KL, KU, NRHS, A, $ LDA, B, LDB, X, LDB, XACT, $ LDB, RWORK, RWORK( NRHS+1 ), $ RESULT( 5 ) ) DO 60 K = 2, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9996 )TRANS, N, $ KL, KU, NRHS, IMAT, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 60 CONTINUE NRUN = NRUN + 5 70 CONTINUE 80 CONTINUE * *+ TEST 7: * Get an estimate of RCOND = 1/CNDNUM. * 90 CONTINUE DO 100 ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN ANORM = ANORMO RCONDC = RCONDO NORM = 'O' ELSE ANORM = ANORMI RCONDC = RCONDI NORM = 'I' END IF SRNAMT = 'SGBCON' CALL SGBCON( NORM, N, KL, KU, AFAC, LDAFAC, $ IWORK, ANORM, RCOND, WORK, $ IWORK( N+1 ), INFO ) * * Check error code from SGBCON. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'SGBCON', INFO, 0, $ NORM, N, N, KL, KU, -1, IMAT, $ NFAIL, NERRS, NOUT ) * RESULT( 7 ) = SGET06( RCOND, RCONDC ) * * Print information about the tests that did * not pass the threshold. * IF( RESULT( 7 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9995 )NORM, N, KL, KU, $ IMAT, 7, RESULT( 7 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 100 CONTINUE * 110 CONTINUE 120 CONTINUE 130 CONTINUE 140 CONTINUE 150 CONTINUE 160 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' *** In SCHKGB, LA=', I5, ' is too small for M=', I5, $ ', N=', I5, ', KL=', I4, ', KU=', I4, $ / ' ==> Increase LA to at least ', I5 ) 9998 FORMAT( ' *** In SCHKGB, LAFAC=', I5, ' is too small for M=', I5, $ ', N=', I5, ', KL=', I4, ', KU=', I4, $ / ' ==> Increase LAFAC to at least ', I5 ) 9997 FORMAT( ' M =', I5, ', N =', I5, ', KL=', I5, ', KU=', I5, $ ', NB =', I4, ', type ', I1, ', test(', I1, ')=', G12.5 ) 9996 FORMAT( ' TRANS=''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5, $ ', NRHS=', I3, ', type ', I1, ', test(', I1, ')=', G12.5 ) 9995 FORMAT( ' NORM =''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5, $ ',', 10X, ' type ', I1, ', test(', I1, ')=', G12.5 ) * RETURN * * End of SCHKGB * END