numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/schktz.f | 9076B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
*> \brief \b SCHKTZ * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SCHKTZ( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A, * COPYA, S, TAU, WORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NM, NN, NOUT * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER MVAL( * ), NVAL( * ) * REAL A( * ), COPYA( * ), S( * ), * $ TAU( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SCHKTZ tests STZRZF. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NM *> \verbatim *> NM is INTEGER *> The number of values of M contained in the vector MVAL. *> \endverbatim *> *> \param[in] MVAL *> \verbatim *> MVAL is INTEGER array, dimension (NM) *> The values of the matrix row dimension M. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is REAL array, dimension (MMAX*NMAX) *> where MMAX is the maximum value of M in MVAL and NMAX is the *> maximum value of N in NVAL. *> \endverbatim *> *> \param[out] COPYA *> \verbatim *> COPYA is REAL array, dimension (MMAX*NMAX) *> \endverbatim *> *> \param[out] S *> \verbatim *> S is REAL array, dimension *> (min(MMAX,NMAX)) *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is REAL array, dimension (MMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension *> (MMAX*NMAX + 4*NMAX + MMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_lin * * ===================================================================== SUBROUTINE SCHKTZ( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A, $ COPYA, S, TAU, WORK, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NM, NN, NOUT REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER MVAL( * ), NVAL( * ) REAL A( * ), COPYA( * ), S( * ), $ TAU( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. INTEGER NTYPES PARAMETER ( NTYPES = 3 ) INTEGER NTESTS PARAMETER ( NTESTS = 3 ) REAL ONE, ZERO PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 ) * .. * .. Local Scalars .. CHARACTER*3 PATH INTEGER I, IM, IMODE, IN, INFO, K, LDA, LWORK, M, $ MNMIN, MODE, N, NERRS, NFAIL, NRUN REAL EPS * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ) REAL RESULT( NTESTS ) * .. * .. External Functions .. REAL SLAMCH, SQRT12, SRZT01, SRZT02 EXTERNAL SLAMCH, SQRT12, SRZT01, SRZT02 * .. * .. External Subroutines .. EXTERNAL ALAHD, ALASUM, SERRTZ, SGEQR2, SLACPY, SLAORD, $ SLASET, SLATMS, STZRZF * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, IOUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, IOUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Single precision' PATH( 2: 3 ) = 'TZ' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE EPS = SLAMCH( 'Epsilon' ) * * Test the error exits * IF( TSTERR ) $ CALL SERRTZ( PATH, NOUT ) INFOT = 0 * DO 70 IM = 1, NM * * Do for each value of M in MVAL. * M = MVAL( IM ) LDA = MAX( 1, M ) * DO 60 IN = 1, NN * * Do for each value of N in NVAL for which M .LE. N. * N = NVAL( IN ) MNMIN = MIN( M, N ) LWORK = MAX( 1, N*N+4*M+N, M*N+2*MNMIN+4*N ) * IF( M.LE.N ) THEN DO 50 IMODE = 1, NTYPES IF( .NOT.DOTYPE( IMODE ) ) $ GO TO 50 * * Do for each type of singular value distribution. * 0: zero matrix * 1: one small singular value * 2: exponential distribution * MODE = IMODE - 1 * * Test STZRQF * * Generate test matrix of size m by n using * singular value distribution indicated by `mode'. * IF( MODE.EQ.0 ) THEN CALL SLASET( 'Full', M, N, ZERO, ZERO, A, LDA ) DO 30 I = 1, MNMIN S( I ) = ZERO 30 CONTINUE ELSE CALL SLATMS( M, N, 'Uniform', ISEED, $ 'Nonsymmetric', S, IMODE, $ ONE / EPS, ONE, M, N, 'No packing', A, $ LDA, WORK, INFO ) CALL SGEQR2( M, N, A, LDA, WORK, WORK( MNMIN+1 ), $ INFO ) CALL SLASET( 'Lower', M-1, N, ZERO, ZERO, A( 2 ), $ LDA ) CALL SLAORD( 'Decreasing', MNMIN, S, 1 ) END IF * * Save A and its singular values * CALL SLACPY( 'All', M, N, A, LDA, COPYA, LDA ) * * Call STZRZF to reduce the upper trapezoidal matrix to * upper triangular form. * SRNAMT = 'STZRZF' CALL STZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * Compute norm(svd(a) - svd(r)) * RESULT( 1 ) = SQRT12( M, M, A, LDA, S, WORK, $ LWORK ) * * Compute norm( A - R*Q ) * RESULT( 2 ) = SRZT01( M, N, COPYA, A, LDA, TAU, WORK, $ LWORK ) * * Compute norm(Q'*Q - I). * RESULT( 3 ) = SRZT02( M, N, A, LDA, TAU, WORK, LWORK ) * * Print information about the tests that did not pass * the threshold. * DO 40 K = 1, NTESTS IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )M, N, IMODE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 40 CONTINUE NRUN = NRUN + 3 50 CONTINUE END IF 60 CONTINUE 70 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' M =', I5, ', N =', I5, ', type ', I2, ', test ', I2, $ ', ratio =', G12.5 ) * * End if SCHKTZ * END