numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/slqt01.f 6056B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
*> \brief \b SLQT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
*                          RWORK, RESULT )
*
*       .. Scalar Arguments ..
*       INTEGER            LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), AF( LDA, * ), L( LDA, * ),
*      $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
*      $                   WORK( LWORK )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLQT01 tests SGELQF, which computes the LQ factorization of an m-by-n
*> matrix A, and partially tests SORGLQ which forms the n-by-n
*> orthogonal matrix Q.
*>
*> SLQT01 compares L with A*Q', and checks that Q is orthogonal.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          The m-by-n matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*>          AF is REAL array, dimension (LDA,N)
*>          Details of the LQ factorization of A, as returned by SGELQF.
*>          See SGELQF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is REAL array, dimension (LDA,N)
*>          The n-by-n orthogonal matrix Q.
*> \endverbatim
*>
*> \param[out] L
*> \verbatim
*>          L is REAL array, dimension (LDA,max(M,N))
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays A, AF, Q and L.
*>          LDA >= max(M,N).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is REAL array, dimension (min(M,N))
*>          The scalar factors of the elementary reflectors, as returned
*>          by SGELQF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (max(M,N))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is REAL array, dimension (2)
*>          The test ratios:
*>          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
*>          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
*  =====================================================================
      SUBROUTINE SLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), AF( LDA, * ), L( LDA, * ),
     $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      REAL               ROGUE
      PARAMETER          ( ROGUE = -1.0E+10 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, MINMN
      REAL               ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANGE, SLANSY
      EXTERNAL           SLAMCH, SLANGE, SLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGELQF, SGEMM, SLACPY, SLASET, SORGLQ, SSYRK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      MINMN = MIN( M, N )
      EPS = SLAMCH( 'Epsilon' )
*
*     Copy the matrix A to the array AF.
*
      CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
*     Factorize the matrix A in the array AF.
*
      SRNAMT = 'SGELQF'
      CALL SGELQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy details of Q
*
      CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
      IF( N.GT.1 )
     $   CALL SLACPY( 'Upper', M, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
*     Generate the n-by-n matrix Q
*
      SRNAMT = 'SORGLQ'
      CALL SORGLQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy L
*
      CALL SLASET( 'Full', M, N, ZERO, ZERO, L, LDA )
      CALL SLACPY( 'Lower', M, N, AF, LDA, L, LDA )
*
*     Compute L - A*Q'
*
      CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
     $            LDA, ONE, L, LDA )
*
*     Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) .
*
      ANORM = SLANGE( '1', M, N, A, LDA, RWORK )
      RESID = SLANGE( '1', M, N, L, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL SLASET( 'Full', N, N, ZERO, ONE, L, LDA )
      CALL SSYRK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, L,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = SLANSY( '1', 'Upper', N, L, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of SLQT01
*
      END