numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/stpt01.f 5661B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
*> \brief \b STPT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE STPT01( UPLO, DIAG, N, AP, AINVP, RCOND, WORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, UPLO
*       INTEGER            N
*       REAL               RCOND, RESID
*       ..
*       .. Array Arguments ..
*       REAL               AINVP( * ), AP( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> STPT01 computes the residual for a triangular matrix A times its
*> inverse when A is stored in packed format:
*>    RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is REAL array, dimension (N*(N+1)/2)
*>          The original upper or lower triangular matrix A, packed
*>          columnwise in a linear array.  The j-th column of A is stored
*>          in the array AP as follows:
*>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L',
*>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[in,out] AINVP
*> \verbatim
*>          AINVP is REAL array, dimension (N*(N+1)/2)
*>          On entry, the (triangular) inverse of the matrix A, packed
*>          columnwise in a linear array as in AP.
*>          On exit, the contents of AINVP are destroyed.
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is REAL
*>          The reciprocal condition number of A, computed as
*>          1/(norm(A) * norm(AINV)).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
*  =====================================================================
      SUBROUTINE STPT01( UPLO, DIAG, N, AP, AINVP, RCOND, WORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, UPLO
      INTEGER            N
      REAL               RCOND, RESID
*     ..
*     .. Array Arguments ..
      REAL               AINVP( * ), AP( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UNITD
      INTEGER            J, JC
      REAL               AINVNM, ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANTP
      EXTERNAL           LSAME, SLAMCH, SLANTP
*     ..
*     .. External Subroutines ..
      EXTERNAL           STPMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RCOND = ONE
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = SLANTP( '1', UPLO, DIAG, N, AP, WORK )
      AINVNM = SLANTP( '1', UPLO, DIAG, N, AINVP, WORK )
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
         RCOND = ZERO
         RESID = ONE / EPS
         RETURN
      END IF
      RCOND = ( ONE / ANORM ) / AINVNM
*
*     Compute A * AINV, overwriting AINV.
*
      UNITD = LSAME( DIAG, 'U' )
      IF( LSAME( UPLO, 'U' ) ) THEN
         JC = 1
         DO 10 J = 1, N
            IF( UNITD )
     $         AINVP( JC+J-1 ) = ONE
*
*           Form the j-th column of A*AINV
*
            CALL STPMV( 'Upper', 'No transpose', DIAG, J, AP,
     $                  AINVP( JC ), 1 )
*
*           Subtract 1 from the diagonal
*
            AINVP( JC+J-1 ) = AINVP( JC+J-1 ) - ONE
            JC = JC + J
   10    CONTINUE
      ELSE
         JC = 1
         DO 20 J = 1, N
            IF( UNITD )
     $         AINVP( JC ) = ONE
*
*           Form the j-th column of A*AINV
*
            CALL STPMV( 'Lower', 'No transpose', DIAG, N-J+1, AP( JC ),
     $                  AINVP( JC ), 1 )
*
*           Subtract 1 from the diagonal
*
            AINVP( JC ) = AINVP( JC ) - ONE
            JC = JC + N - J + 1
   20    CONTINUE
      END IF
*
*     Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
*
      RESID = SLANTP( '1', UPLO, 'Non-unit', N, AINVP, WORK )
*
      RESID = ( ( RESID*RCOND ) / REAL( N ) ) / EPS
*
      RETURN
*
*     End of STPT01
*
      END