numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/strt03.f | 7984B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
*> \brief \b STRT03 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE STRT03( UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE, * CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID ) * * .. Scalar Arguments .. * CHARACTER DIAG, TRANS, UPLO * INTEGER LDA, LDB, LDX, N, NRHS * REAL RESID, SCALE, TSCAL * .. * .. Array Arguments .. * REAL A( LDA, * ), B( LDB, * ), CNORM( * ), * $ WORK( * ), X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> STRT03 computes the residual for the solution to a scaled triangular *> system of equations A*x = s*b or A'*x = s*b. *> Here A is a triangular matrix, A' is the transpose of A, s is a *> scalar, and x and b are N by NRHS matrices. The test ratio is the *> maximum over the number of right hand sides of *> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), *> where op(A) denotes A or A' and EPS is the machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the matrix A is upper or lower triangular. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies the operation applied to A. *> = 'N': A *x = s*b (No transpose) *> = 'T': A'*x = s*b (Transpose) *> = 'C': A'*x = s*b (Conjugate transpose = Transpose) *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER*1 *> Specifies whether or not the matrix A is unit triangular. *> = 'N': Non-unit triangular *> = 'U': Unit triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrices X and B. NRHS >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is REAL array, dimension (LDA,N) *> The triangular matrix A. If UPLO = 'U', the leading n by n *> upper triangular part of the array A contains the upper *> triangular matrix, and the strictly lower triangular part of *> A is not referenced. If UPLO = 'L', the leading n by n lower *> triangular part of the array A contains the lower triangular *> matrix, and the strictly upper triangular part of A is not *> referenced. If DIAG = 'U', the diagonal elements of A are *> also not referenced and are assumed to be 1. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] SCALE *> \verbatim *> SCALE is REAL *> The scaling factor s used in solving the triangular system. *> \endverbatim *> *> \param[in] CNORM *> \verbatim *> CNORM is REAL array, dimension (N) *> The 1-norms of the columns of A, not counting the diagonal. *> \endverbatim *> *> \param[in] TSCAL *> \verbatim *> TSCAL is REAL *> The scaling factor used in computing the 1-norms in CNORM. *> CNORM actually contains the column norms of TSCAL*A. *> \endverbatim *> *> \param[in] X *> \verbatim *> X is REAL array, dimension (LDX,NRHS) *> The computed solution vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is REAL array, dimension (LDB,NRHS) *> The right hand side vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is REAL *> The maximum over the number of right hand sides of *> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_lin * * ===================================================================== SUBROUTINE STRT03( UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE, $ CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER DIAG, TRANS, UPLO INTEGER LDA, LDB, LDX, N, NRHS REAL RESID, SCALE, TSCAL * .. * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), CNORM( * ), $ WORK( * ), X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER IX, J REAL BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL * .. * .. External Functions .. LOGICAL LSAME INTEGER ISAMAX REAL SLAMCH EXTERNAL LSAME, ISAMAX, SLAMCH * .. * .. External Subroutines .. EXTERNAL SAXPY, SCOPY, SSCAL, STRMV * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, REAL * .. * .. Executable Statements .. * * Quick exit if N = 0 * IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RESID = ZERO RETURN END IF EPS = SLAMCH( 'Epsilon' ) SMLNUM = SLAMCH( 'Safe minimum' ) BIGNUM = ONE / SMLNUM * * Compute the norm of the triangular matrix A using the column * norms already computed by SLATRS. * TNORM = ZERO IF( LSAME( DIAG, 'N' ) ) THEN DO 10 J = 1, N TNORM = MAX( TNORM, TSCAL*ABS( A( J, J ) )+CNORM( J ) ) 10 CONTINUE ELSE DO 20 J = 1, N TNORM = MAX( TNORM, TSCAL+CNORM( J ) ) 20 CONTINUE END IF * * Compute the maximum over the number of right hand sides of * norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). * RESID = ZERO DO 30 J = 1, NRHS CALL SCOPY( N, X( 1, J ), 1, WORK, 1 ) IX = ISAMAX( N, WORK, 1 ) XNORM = MAX( ONE, ABS( X( IX, J ) ) ) XSCAL = ( ONE / XNORM ) / REAL( N ) CALL SSCAL( N, XSCAL, WORK, 1 ) CALL STRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 ) CALL SAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 ) IX = ISAMAX( N, WORK, 1 ) ERR = TSCAL*ABS( WORK( IX ) ) IX = ISAMAX( N, X( 1, J ), 1 ) XNORM = ABS( X( IX, J ) ) IF( ERR*SMLNUM.LE.XNORM ) THEN IF( XNORM.GT.ZERO ) $ ERR = ERR / XNORM ELSE IF( ERR.GT.ZERO ) $ ERR = ONE / EPS END IF IF( ERR*SMLNUM.LE.TNORM ) THEN IF( TNORM.GT.ZERO ) $ ERR = ERR / TNORM ELSE IF( ERR.GT.ZERO ) $ ERR = ONE / EPS END IF RESID = MAX( RESID, ERR ) 30 CONTINUE * RETURN * * End of STRT03 * END