numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/zebchvxx.f | 18978B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
*> \brief \b ZEBCHVXX * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZEBCHVXX( THRESH, PATH ) * * .. Scalar Arguments .. * DOUBLE PRECISION THRESH * CHARACTER*3 PATH * .. * * Purpose * ====== * *> \details \b Purpose: *> \verbatim *> *> ZEBCHVXX will run Z**SVXX on a series of Hilbert matrices and then *> compare the error bounds returned by Z**SVXX to see if the returned *> answer indeed falls within those bounds. *> *> Eight test ratios will be computed. The tests will pass if they are .LT. *> THRESH. There are two cases that are determined by 1 / (SQRT( N ) * EPS). *> If that value is .LE. to the component wise reciprocal condition number, *> it uses the guaranteed case, other wise it uses the unguaranteed case. *> *> Test ratios: *> Let Xc be X_computed and Xt be X_truth. *> The norm used is the infinity norm. *> *> Let A be the guaranteed case and B be the unguaranteed case. *> *> 1. Normwise guaranteed forward error bound. *> A: norm ( abs( Xc - Xt ) / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ) and *> ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N),10) * EPS. *> If these conditions are met, the test ratio is set to be *> ERRBND( *, nwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS. *> B: For this case, CGESVXX should just return 1. If it is less than *> one, treat it the same as in 1A. Otherwise it fails. (Set test *> ratio to ERRBND( *, nwise_i, bnd_i ) * THRESH?) *> *> 2. Componentwise guaranteed forward error bound. *> A: norm ( abs( Xc(j) - Xt(j) ) ) / norm (Xt(j)) .LE. ERRBND( *, cwise_i, bnd_i ) *> for all j .AND. ERRBND( *, cwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS. *> If these conditions are met, the test ratio is set to be *> ERRBND( *, cwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS. *> B: Same as normwise test ratio. *> *> 3. Backwards error. *> A: The test ratio is set to BERR/EPS. *> B: Same test ratio. *> *> 4. Reciprocal condition number. *> A: A condition number is computed with Xt and compared with the one *> returned from CGESVXX. Let RCONDc be the RCOND returned by CGESVXX *> and RCONDt be the RCOND from the truth value. Test ratio is set to *> MAX(RCONDc/RCONDt, RCONDt/RCONDc). *> B: Test ratio is set to 1 / (EPS * RCONDc). *> *> 5. Reciprocal normwise condition number. *> A: The test ratio is set to *> MAX(ERRBND( *, nwise_i, cond_i ) / NCOND, NCOND / ERRBND( *, nwise_i, cond_i )). *> B: Test ratio is set to 1 / (EPS * ERRBND( *, nwise_i, cond_i )). *> *> 6. Reciprocal componentwise condition number. *> A: Test ratio is set to *> MAX(ERRBND( *, cwise_i, cond_i ) / CCOND, CCOND / ERRBND( *, cwise_i, cond_i )). *> B: Test ratio is set to 1 / (EPS * ERRBND( *, cwise_i, cond_i )). *> *> .. Parameters .. *> NMAX is determined by the largest number in the inverse of the hilbert *> matrix. Precision is exhausted when the largest entry in it is greater *> than 2 to the power of the number of bits in the fraction of the data *> type used plus one, which is 24 for single precision. *> NMAX should be 6 for single and 11 for double. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZEBCHVXX( THRESH, PATH ) IMPLICIT NONE * .. Scalar Arguments .. DOUBLE PRECISION THRESH CHARACTER*3 PATH INTEGER NMAX, NPARAMS, NERRBND, NTESTS, KL, KU PARAMETER (NMAX = 10, NPARAMS = 2, NERRBND = 3, $ NTESTS = 6) * .. Local Scalars .. INTEGER N, NRHS, INFO, I ,J, k, NFAIL, LDA, $ N_AUX_TESTS, LDAB, LDAFB CHARACTER FACT, TRANS, UPLO, EQUED CHARACTER*2 C2 CHARACTER(3) NGUAR, CGUAR LOGICAL printed_guide DOUBLE PRECISION NCOND, CCOND, M, NORMDIF, NORMT, RCOND, $ RNORM, RINORM, SUMR, SUMRI, EPS, $ BERR(NMAX), RPVGRW, ORCOND, $ CWISE_ERR, NWISE_ERR, CWISE_BND, NWISE_BND, $ CWISE_RCOND, NWISE_RCOND, $ CONDTHRESH, ERRTHRESH COMPLEX*16 ZDUM * .. Local Arrays .. DOUBLE PRECISION TSTRAT(NTESTS), RINV(NMAX), PARAMS(NPARAMS), $ S(NMAX),R(NMAX),C(NMAX),RWORK(3*NMAX), $ DIFF(NMAX, NMAX), $ ERRBND_N(NMAX*3), ERRBND_C(NMAX*3) INTEGER IPIV(NMAX) COMPLEX*16 A(NMAX,NMAX),INVHILB(NMAX,NMAX),X(NMAX,NMAX), $ WORK(NMAX*3*5), AF(NMAX, NMAX),B(NMAX, NMAX), $ ACOPY(NMAX, NMAX), $ AB( (NMAX-1)+(NMAX-1)+1, NMAX ), $ ABCOPY( (NMAX-1)+(NMAX-1)+1, NMAX ), $ AFB( 2*(NMAX-1)+(NMAX-1)+1, NMAX ) * .. External Functions .. DOUBLE PRECISION DLAMCH * .. External Subroutines .. EXTERNAL ZLAHILB, ZGESVXX, ZPOSVXX, ZSYSVXX, $ ZGBSVXX, ZLACPY, LSAMEN LOGICAL LSAMEN * .. Intrinsic Functions .. INTRINSIC SQRT, MAX, ABS, DBLE, DIMAG * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. Statement Function Definitions .. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) * .. Parameters .. INTEGER NWISE_I, CWISE_I PARAMETER (NWISE_I = 1, CWISE_I = 1) INTEGER BND_I, COND_I PARAMETER (BND_I = 2, COND_I = 3) * Create the loop to test out the Hilbert matrices FACT = 'E' UPLO = 'U' TRANS = 'N' EQUED = 'N' EPS = DLAMCH('Epsilon') NFAIL = 0 N_AUX_TESTS = 0 LDA = NMAX LDAB = (NMAX-1)+(NMAX-1)+1 LDAFB = 2*(NMAX-1)+(NMAX-1)+1 C2 = PATH( 2: 3 ) * Main loop to test the different Hilbert Matrices. printed_guide = .false. DO N = 1 , NMAX PARAMS(1) = -1 PARAMS(2) = -1 KL = N-1 KU = N-1 NRHS = n M = MAX(SQRT(DBLE(N)), 10.0D+0) * Generate the Hilbert matrix, its inverse, and the * right hand side, all scaled by the LCM(1,..,2N-1). CALL ZLAHILB(N, N, A, LDA, INVHILB, LDA, B, $ LDA, WORK, INFO, PATH) * Copy A into ACOPY. CALL ZLACPY('ALL', N, N, A, NMAX, ACOPY, NMAX) * Store A in band format for GB tests DO J = 1, N DO I = 1, KL+KU+1 AB( I, J ) = (0.0D+0,0.0D+0) END DO END DO DO J = 1, N DO I = MAX( 1, J-KU ), MIN( N, J+KL ) AB( KU+1+I-J, J ) = A( I, J ) END DO END DO * Copy AB into ABCOPY. DO J = 1, N DO I = 1, KL+KU+1 ABCOPY( I, J ) = (0.0D+0,0.0D+0) END DO END DO CALL ZLACPY('ALL', KL+KU+1, N, AB, LDAB, ABCOPY, LDAB) * Call Z**SVXX with default PARAMS and N_ERR_BND = 3. IF ( LSAMEN( 2, C2, 'SY' ) ) THEN CALL ZSYSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA, $ IPIV, EQUED, S, B, LDA, X, LDA, ORCOND, $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS, $ PARAMS, WORK, RWORK, INFO) ELSE IF ( LSAMEN( 2, C2, 'PO' ) ) THEN CALL ZPOSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA, $ EQUED, S, B, LDA, X, LDA, ORCOND, $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS, $ PARAMS, WORK, RWORK, INFO) ELSE IF ( LSAMEN( 2, C2, 'HE' ) ) THEN CALL ZHESVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA, $ IPIV, EQUED, S, B, LDA, X, LDA, ORCOND, $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS, $ PARAMS, WORK, RWORK, INFO) ELSE IF ( LSAMEN( 2, C2, 'GB' ) ) THEN CALL ZGBSVXX(FACT, TRANS, N, KL, KU, NRHS, ABCOPY, $ LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B, $ LDA, X, LDA, ORCOND, RPVGRW, BERR, NERRBND, $ ERRBND_N, ERRBND_C, NPARAMS, PARAMS, WORK, RWORK, $ INFO) ELSE CALL ZGESVXX(FACT, TRANS, N, NRHS, ACOPY, LDA, AF, LDA, $ IPIV, EQUED, R, C, B, LDA, X, LDA, ORCOND, $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS, $ PARAMS, WORK, RWORK, INFO) END IF N_AUX_TESTS = N_AUX_TESTS + 1 IF (ORCOND .LT. EPS) THEN ! Either factorization failed or the matrix is flagged, and 1 <= ! INFO <= N+1. We don't decide based on rcond anymore. ! IF (INFO .EQ. 0 .OR. INFO .GT. N+1) THEN ! NFAIL = NFAIL + 1 ! WRITE (*, FMT=8000) N, INFO, ORCOND, RCOND ! END IF ELSE ! Either everything succeeded (INFO == 0) or some solution failed ! to converge (INFO > N+1). IF (INFO .GT. 0 .AND. INFO .LE. N+1) THEN NFAIL = NFAIL + 1 WRITE (*, FMT=8000) C2, N, INFO, ORCOND, RCOND END IF END IF * Calculating the difference between Z**SVXX's X and the true X. DO I = 1,N DO J =1,NRHS DIFF(I,J) = X(I,J) - INVHILB(I,J) END DO END DO * Calculating the RCOND RNORM = 0 RINORM = 0 IF ( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'SY' ) .OR. $ LSAMEN( 2, C2, 'HE' ) ) THEN DO I = 1, N SUMR = 0 SUMRI = 0 DO J = 1, N SUMR = SUMR + S(I) * CABS1(A(I,J)) * S(J) SUMRI = SUMRI + CABS1(INVHILB(I, J)) / (S(J) * S(I)) END DO RNORM = MAX(RNORM,SUMR) RINORM = MAX(RINORM,SUMRI) END DO ELSE IF ( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'GB' ) ) $ THEN DO I = 1, N SUMR = 0 SUMRI = 0 DO J = 1, N SUMR = SUMR + R(I) * CABS1(A(I,J)) * C(J) SUMRI = SUMRI + CABS1(INVHILB(I, J)) / (R(J) * C(I)) END DO RNORM = MAX(RNORM,SUMR) RINORM = MAX(RINORM,SUMRI) END DO END IF RNORM = RNORM / CABS1(A(1, 1)) RCOND = 1.0D+0/(RNORM * RINORM) * Calculating the R for normwise rcond. DO I = 1, N RINV(I) = 0.0D+0 END DO DO J = 1, N DO I = 1, N RINV(I) = RINV(I) + CABS1(A(I,J)) END DO END DO * Calculating the Normwise rcond. RINORM = 0.0D+0 DO I = 1, N SUMRI = 0.0D+0 DO J = 1, N SUMRI = SUMRI + CABS1(INVHILB(I,J) * RINV(J)) END DO RINORM = MAX(RINORM, SUMRI) END DO ! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm ! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix) NCOND = CABS1(A(1,1)) / RINORM CONDTHRESH = M * EPS ERRTHRESH = M * EPS DO K = 1, NRHS NORMT = 0.0D+0 NORMDIF = 0.0D+0 CWISE_ERR = 0.0D+0 DO I = 1, N NORMT = MAX(CABS1(INVHILB(I, K)), NORMT) NORMDIF = MAX(CABS1(X(I,K) - INVHILB(I,K)), NORMDIF) IF (INVHILB(I,K) .NE. 0.0D+0) THEN CWISE_ERR = MAX(CABS1(X(I,K) - INVHILB(I,K)) $ /CABS1(INVHILB(I,K)), CWISE_ERR) ELSE IF (X(I, K) .NE. 0.0D+0) THEN CWISE_ERR = DLAMCH('OVERFLOW') END IF END DO IF (NORMT .NE. 0.0D+0) THEN NWISE_ERR = NORMDIF / NORMT ELSE IF (NORMDIF .NE. 0.0D+0) THEN NWISE_ERR = DLAMCH('OVERFLOW') ELSE NWISE_ERR = 0.0D+0 ENDIF DO I = 1, N RINV(I) = 0.0D+0 END DO DO J = 1, N DO I = 1, N RINV(I) = RINV(I) + CABS1(A(I, J) * INVHILB(J, K)) END DO END DO RINORM = 0.0D+0 DO I = 1, N SUMRI = 0.0D+0 DO J = 1, N SUMRI = SUMRI $ + CABS1(INVHILB(I, J) * RINV(J) / INVHILB(I, K)) END DO RINORM = MAX(RINORM, SUMRI) END DO ! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm ! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix) CCOND = CABS1(A(1,1))/RINORM ! Forward error bound tests NWISE_BND = ERRBND_N(K + (BND_I-1)*NRHS) CWISE_BND = ERRBND_C(K + (BND_I-1)*NRHS) NWISE_RCOND = ERRBND_N(K + (COND_I-1)*NRHS) CWISE_RCOND = ERRBND_C(K + (COND_I-1)*NRHS) ! write (*,*) 'nwise : ', n, k, ncond, nwise_rcond, ! $ condthresh, ncond.ge.condthresh ! write (*,*) 'nwise2: ', k, nwise_bnd, nwise_err, errthresh IF (NCOND .GE. CONDTHRESH) THEN NGUAR = 'YES' IF (NWISE_BND .GT. ERRTHRESH) THEN TSTRAT(1) = 1/(2.0D+0*EPS) ELSE IF (NWISE_BND .NE. 0.0D+0) THEN TSTRAT(1) = NWISE_ERR / NWISE_BND ELSE IF (NWISE_ERR .NE. 0.0D+0) THEN TSTRAT(1) = 1/(16.0*EPS) ELSE TSTRAT(1) = 0.0D+0 END IF IF (TSTRAT(1) .GT. 1.0D+0) THEN TSTRAT(1) = 1/(4.0D+0*EPS) END IF END IF ELSE NGUAR = 'NO' IF (NWISE_BND .LT. 1.0D+0) THEN TSTRAT(1) = 1/(8.0D+0*EPS) ELSE TSTRAT(1) = 1.0D+0 END IF END IF ! write (*,*) 'cwise : ', n, k, ccond, cwise_rcond, ! $ condthresh, ccond.ge.condthresh ! write (*,*) 'cwise2: ', k, cwise_bnd, cwise_err, errthresh IF (CCOND .GE. CONDTHRESH) THEN CGUAR = 'YES' IF (CWISE_BND .GT. ERRTHRESH) THEN TSTRAT(2) = 1/(2.0D+0*EPS) ELSE IF (CWISE_BND .NE. 0.0D+0) THEN TSTRAT(2) = CWISE_ERR / CWISE_BND ELSE IF (CWISE_ERR .NE. 0.0D+0) THEN TSTRAT(2) = 1/(16.0D+0*EPS) ELSE TSTRAT(2) = 0.0D+0 END IF IF (TSTRAT(2) .GT. 1.0D+0) TSTRAT(2) = 1/(4.0D+0*EPS) END IF ELSE CGUAR = 'NO' IF (CWISE_BND .LT. 1.0D+0) THEN TSTRAT(2) = 1/(8.0D+0*EPS) ELSE TSTRAT(2) = 1.0D+0 END IF END IF ! Backwards error test TSTRAT(3) = BERR(K)/EPS ! Condition number tests TSTRAT(4) = RCOND / ORCOND IF (RCOND .GE. CONDTHRESH .AND. TSTRAT(4) .LT. 1.0D+0) $ TSTRAT(4) = 1.0D+0 / TSTRAT(4) TSTRAT(5) = NCOND / NWISE_RCOND IF (NCOND .GE. CONDTHRESH .AND. TSTRAT(5) .LT. 1.0D+0) $ TSTRAT(5) = 1.0D+0 / TSTRAT(5) TSTRAT(6) = CCOND / NWISE_RCOND IF (CCOND .GE. CONDTHRESH .AND. TSTRAT(6) .LT. 1.0D+0) $ TSTRAT(6) = 1.0D+0 / TSTRAT(6) DO I = 1, NTESTS IF (TSTRAT(I) .GT. THRESH) THEN IF (.NOT.PRINTED_GUIDE) THEN WRITE(*,*) WRITE( *, 9996) 1 WRITE( *, 9995) 2 WRITE( *, 9994) 3 WRITE( *, 9993) 4 WRITE( *, 9992) 5 WRITE( *, 9991) 6 WRITE( *, 9990) 7 WRITE( *, 9989) 8 WRITE(*,*) PRINTED_GUIDE = .TRUE. END IF WRITE( *, 9999) C2, N, K, NGUAR, CGUAR, I, TSTRAT(I) NFAIL = NFAIL + 1 END IF END DO END DO c$$$ WRITE(*,*) c$$$ WRITE(*,*) 'Normwise Error Bounds' c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,nwise_i,bnd_i) c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,nwise_i,cond_i) c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,nwise_i,rawbnd_i) c$$$ WRITE(*,*) c$$$ WRITE(*,*) 'Componentwise Error Bounds' c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,cwise_i,bnd_i) c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,cwise_i,cond_i) c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,cwise_i,rawbnd_i) c$$$ print *, 'Info: ', info c$$$ WRITE(*,*) * WRITE(*,*) 'TSTRAT: ',TSTRAT END DO WRITE(*,*) IF( NFAIL .GT. 0 ) THEN WRITE(*,9998) C2, NFAIL, NTESTS*N+N_AUX_TESTS ELSE WRITE(*,9997) C2 END IF 9999 FORMAT( ' Z', A2, 'SVXX: N =', I2, ', RHS = ', I2, $ ', NWISE GUAR. = ', A, ', CWISE GUAR. = ', A, $ ' test(',I1,') =', G12.5 ) 9998 FORMAT( ' Z', A2, 'SVXX: ', I6, ' out of ', I6, $ ' tests failed to pass the threshold' ) 9997 FORMAT( ' Z', A2, 'SVXX passed the tests of error bounds' ) * Test ratios. 9996 FORMAT( 3X, I2, ': Normwise guaranteed forward error', / 5X, $ 'Guaranteed case: if norm ( abs( Xc - Xt )', $ ' / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ), then', $ / 5X, $ 'ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS') 9995 FORMAT( 3X, I2, ': Componentwise guaranteed forward error' ) 9994 FORMAT( 3X, I2, ': Backwards error' ) 9993 FORMAT( 3X, I2, ': Reciprocal condition number' ) 9992 FORMAT( 3X, I2, ': Reciprocal normwise condition number' ) 9991 FORMAT( 3X, I2, ': Raw normwise error estimate' ) 9990 FORMAT( 3X, I2, ': Reciprocal componentwise condition number' ) 9989 FORMAT( 3X, I2, ': Raw componentwise error estimate' ) 8000 FORMAT( ' Z', A2, 'SVXX: N =', I2, ', INFO = ', I3, $ ', ORCOND = ', G12.5, ', real RCOND = ', G12.5 ) * * End of ZEBCHVXX * END