numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/zgtt01.f 6890B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
*> \brief \b ZGTT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
*                          LDWORK, RWORK, RESID )
*
*       .. Scalar Arguments ..
*       INTEGER            LDWORK, N
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
*      $                   DU2( * ), DUF( * ), WORK( LDWORK, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGTT01 reconstructs a tridiagonal matrix A from its LU factorization
*> and computes the residual
*>    norm(L*U - A) / ( norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*>          DL is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) sub-diagonal elements of A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is COMPLEX*16 array, dimension (N)
*>          The diagonal elements of A.
*> \endverbatim
*>
*> \param[in] DU
*> \verbatim
*>          DU is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) super-diagonal elements of A.
*> \endverbatim
*>
*> \param[in] DLF
*> \verbatim
*>          DLF is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) multipliers that define the matrix L from the
*>          LU factorization of A.
*> \endverbatim
*>
*> \param[in] DF
*> \verbatim
*>          DF is COMPLEX*16 array, dimension (N)
*>          The n diagonal elements of the upper triangular matrix U from
*>          the LU factorization of A.
*> \endverbatim
*>
*> \param[in] DUF
*> \verbatim
*>          DUF is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) elements of the first super-diagonal of U.
*> \endverbatim
*>
*> \param[in] DU2
*> \verbatim
*>          DU2 is COMPLEX*16 array, dimension (N-2)
*>          The (n-2) elements of the second super-diagonal of U.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices; for 1 <= i <= n, row i of the matrix was
*>          interchanged with row IPIV(i).  IPIV(i) will always be either
*>          i or i+1; IPIV(i) = i indicates a row interchange was not
*>          required.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (LDWORK,N)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*>          LDWORK is INTEGER
*>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          The scaled residual:  norm(L*U - A) / (norm(A) * EPS)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
     $                   LDWORK, RWORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            LDWORK, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
     $                   DU2( * ), DUF( * ), WORK( LDWORK, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IP, J, LASTJ
      DOUBLE PRECISION   ANORM, EPS
      COMPLEX*16         LI
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGT, ZLANHS
      EXTERNAL           DLAMCH, ZLANGT, ZLANHS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZSWAP
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Copy the matrix U to WORK.
*
      DO 20 J = 1, N
         DO 10 I = 1, N
            WORK( I, J ) = ZERO
   10    CONTINUE
   20 CONTINUE
      DO 30 I = 1, N
         IF( I.EQ.1 ) THEN
            WORK( I, I ) = DF( I )
            IF( N.GE.2 )
     $         WORK( I, I+1 ) = DUF( I )
            IF( N.GE.3 )
     $         WORK( I, I+2 ) = DU2( I )
         ELSE IF( I.EQ.N ) THEN
            WORK( I, I ) = DF( I )
         ELSE
            WORK( I, I ) = DF( I )
            WORK( I, I+1 ) = DUF( I )
            IF( I.LT.N-1 )
     $         WORK( I, I+2 ) = DU2( I )
         END IF
   30 CONTINUE
*
*     Multiply on the left by L.
*
      LASTJ = N
      DO 40 I = N - 1, 1, -1
         LI = DLF( I )
         CALL ZAXPY( LASTJ-I+1, LI, WORK( I, I ), LDWORK,
     $               WORK( I+1, I ), LDWORK )
         IP = IPIV( I )
         IF( IP.EQ.I ) THEN
            LASTJ = MIN( I+2, N )
         ELSE
            CALL ZSWAP( LASTJ-I+1, WORK( I, I ), LDWORK, WORK( I+1, I ),
     $                  LDWORK )
         END IF
   40 CONTINUE
*
*     Subtract the matrix A.
*
      WORK( 1, 1 ) = WORK( 1, 1 ) - D( 1 )
      IF( N.GT.1 ) THEN
         WORK( 1, 2 ) = WORK( 1, 2 ) - DU( 1 )
         WORK( N, N-1 ) = WORK( N, N-1 ) - DL( N-1 )
         WORK( N, N ) = WORK( N, N ) - D( N )
         DO 50 I = 2, N - 1
            WORK( I, I-1 ) = WORK( I, I-1 ) - DL( I-1 )
            WORK( I, I ) = WORK( I, I ) - D( I )
            WORK( I, I+1 ) = WORK( I, I+1 ) - DU( I )
   50    CONTINUE
      END IF
*
*     Compute the 1-norm of the tridiagonal matrix A.
*
      ANORM = ZLANGT( '1', N, DL, D, DU )
*
*     Compute the 1-norm of WORK, which is only guaranteed to be
*     upper Hessenberg.
*
      RESID = ZLANHS( '1', N, WORK, LDWORK, RWORK )
*
*     Compute norm(L*U - A) / (norm(A) * EPS)
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( RESID / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of ZGTT01
*
      END