numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/zlaipd.f 3294B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
*> \brief \b ZLAIPD
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLAIPD( N, A, INDA, VINDA )
*
*       .. Scalar Arguments ..
*       INTEGER            INDA, N, VINDA
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         A( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLAIPD sets the imaginary part of the diagonal elements of a complex
*> matrix A to a large value.  This is used to test LAPACK routines for
*> complex Hermitian matrices, which are not supposed to access or use
*> the imaginary parts of the diagonals.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The number of diagonal elements of A.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension
*>                        (1+(N-1)*INDA+(N-2)*VINDA)
*>         On entry, the complex (Hermitian) matrix A.
*>         On exit, the imaginary parts of the diagonal elements are set
*>         to BIGNUM = EPS / SAFMIN, where EPS is the machine epsilon and
*>         SAFMIN is the safe minimum.
*> \endverbatim
*>
*> \param[in] INDA
*> \verbatim
*>          INDA is INTEGER
*>         The increment between A(1) and the next diagonal element of A.
*>         Typical values are
*>         = LDA+1:  square matrices with leading dimension LDA
*>         = 2:  packed upper triangular matrix, starting at A(1,1)
*>         = N:  packed lower triangular matrix, starting at A(1,1)
*> \endverbatim
*>
*> \param[in] VINDA
*> \verbatim
*>          VINDA is INTEGER
*>         The change in the diagonal increment between columns of A.
*>         Typical values are
*>         = 0:  no change, the row and column increments in A are fixed
*>         = 1:  packed upper triangular matrix
*>         = -1:  packed lower triangular matrix
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZLAIPD( N, A, INDA, VINDA )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INDA, N, VINDA
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, IA, IXA
      DOUBLE PRECISION   BIGNUM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX
*     ..
*     .. Executable Statements ..
*
      BIGNUM = DLAMCH( 'Epsilon' ) / DLAMCH( 'Safe minimum' )
      IA = 1
      IXA = INDA
      DO 10 I = 1, N
         A( IA ) = DCMPLX( DBLE( A( IA ) ), BIGNUM )
         IA = IA + IXA
         IXA = IXA + VINDA
   10 CONTINUE
      RETURN
      END