numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/zlattb.f | 22537B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
*> \brief \b ZLATTB * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB, * LDAB, B, WORK, RWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER DIAG, TRANS, UPLO * INTEGER IMAT, INFO, KD, LDAB, N * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 AB( LDAB, * ), B( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLATTB generates a triangular test matrix in 2-dimensional storage. *> IMAT and UPLO uniquely specify the properties of the test matrix, *> which is returned in the array A. *> \endverbatim * * Arguments: * ========== * *> \param[in] IMAT *> \verbatim *> IMAT is INTEGER *> An integer key describing which matrix to generate for this *> path. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the matrix A will be upper or lower *> triangular. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies whether the matrix or its transpose will be used. *> = 'N': No transpose *> = 'T': Transpose *> = 'C': Conjugate transpose (= transpose) *> \endverbatim *> *> \param[out] DIAG *> \verbatim *> DIAG is CHARACTER*1 *> Specifies whether or not the matrix A is unit triangular. *> = 'N': Non-unit triangular *> = 'U': Unit triangular *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> The seed vector for the random number generator (used in *> ZLATMS). Modified on exit. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix to be generated. *> \endverbatim *> *> \param[in] KD *> \verbatim *> KD is INTEGER *> The number of superdiagonals or subdiagonals of the banded *> triangular matrix A. KD >= 0. *> \endverbatim *> *> \param[out] AB *> \verbatim *> AB is COMPLEX*16 array, dimension (LDAB,N) *> The upper or lower triangular banded matrix A, stored in the *> first KD+1 rows of AB. Let j be a column of A, 1<=j<=n. *> If UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j. *> If UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array AB. LDAB >= KD+1. *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX*16 array, dimension (N) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (2*N) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB, $ LDAB, B, WORK, RWORK, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER DIAG, TRANS, UPLO INTEGER IMAT, INFO, KD, LDAB, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 AB( LDAB, * ), B( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, TWO, ZERO PARAMETER ( ONE = 1.0D+0, TWO = 2.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL UPPER CHARACTER DIST, PACKIT, TYPE CHARACTER*3 PATH INTEGER I, IOFF, IY, J, JCOUNT, KL, KU, LENJ, MODE DOUBLE PRECISION ANORM, BIGNUM, BNORM, BSCAL, CNDNUM, REXP, $ SFAC, SMLNUM, TEXP, TLEFT, TNORM, TSCAL, ULP, $ UNFL COMPLEX*16 PLUS1, PLUS2, STAR1 * .. * .. External Functions .. LOGICAL LSAME INTEGER IZAMAX DOUBLE PRECISION DLAMCH, DLARND COMPLEX*16 ZLARND EXTERNAL LSAME, IZAMAX, DLAMCH, DLARND, ZLARND * .. * .. External Subroutines .. EXTERNAL DLARNV, ZCOPY, ZDSCAL, ZLARNV, ZLATB4, ZLATMS, $ ZSWAP * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCMPLX, MAX, MIN, SQRT * .. * .. Executable Statements .. * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'TB' UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) SMLNUM = UNFL BIGNUM = ( ONE-ULP ) / SMLNUM IF( ( IMAT.GE.6 .AND. IMAT.LE.9 ) .OR. IMAT.EQ.17 ) THEN DIAG = 'U' ELSE DIAG = 'N' END IF INFO = 0 * * Quick return if N.LE.0. * IF( N.LE.0 ) $ RETURN * * Call ZLATB4 to set parameters for ZLATMS. * UPPER = LSAME( UPLO, 'U' ) IF( UPPER ) THEN CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, $ CNDNUM, DIST ) KU = KD IOFF = 1 + MAX( 0, KD-N+1 ) KL = 0 PACKIT = 'Q' ELSE CALL ZLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE, $ CNDNUM, DIST ) KL = KD IOFF = 1 KU = 0 PACKIT = 'B' END IF * * IMAT <= 5: Non-unit triangular matrix * IF( IMAT.LE.5 ) THEN CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, CNDNUM, $ ANORM, KL, KU, PACKIT, AB( IOFF, 1 ), LDAB, WORK, $ INFO ) * * IMAT > 5: Unit triangular matrix * The diagonal is deliberately set to something other than 1. * * IMAT = 6: Matrix is the identity * ELSE IF( IMAT.EQ.6 ) THEN IF( UPPER ) THEN DO 20 J = 1, N DO 10 I = MAX( 1, KD+2-J ), KD AB( I, J ) = ZERO 10 CONTINUE AB( KD+1, J ) = J 20 CONTINUE ELSE DO 40 J = 1, N AB( 1, J ) = J DO 30 I = 2, MIN( KD+1, N-J+1 ) AB( I, J ) = ZERO 30 CONTINUE 40 CONTINUE END IF * * IMAT > 6: Non-trivial unit triangular matrix * * A unit triangular matrix T with condition CNDNUM is formed. * In this version, T only has bandwidth 2, the rest of it is zero. * ELSE IF( IMAT.LE.9 ) THEN TNORM = SQRT( CNDNUM ) * * Initialize AB to zero. * IF( UPPER ) THEN DO 60 J = 1, N DO 50 I = MAX( 1, KD+2-J ), KD AB( I, J ) = ZERO 50 CONTINUE AB( KD+1, J ) = DBLE( J ) 60 CONTINUE ELSE DO 80 J = 1, N DO 70 I = 2, MIN( KD+1, N-J+1 ) AB( I, J ) = ZERO 70 CONTINUE AB( 1, J ) = DBLE( J ) 80 CONTINUE END IF * * Special case: T is tridiagonal. Set every other offdiagonal * so that the matrix has norm TNORM+1. * IF( KD.EQ.1 ) THEN IF( UPPER ) THEN AB( 1, 2 ) = TNORM*ZLARND( 5, ISEED ) LENJ = ( N-3 ) / 2 CALL ZLARNV( 2, ISEED, LENJ, WORK ) DO 90 J = 1, LENJ AB( 1, 2*( J+1 ) ) = TNORM*WORK( J ) 90 CONTINUE ELSE AB( 2, 1 ) = TNORM*ZLARND( 5, ISEED ) LENJ = ( N-3 ) / 2 CALL ZLARNV( 2, ISEED, LENJ, WORK ) DO 100 J = 1, LENJ AB( 2, 2*J+1 ) = TNORM*WORK( J ) 100 CONTINUE END IF ELSE IF( KD.GT.1 ) THEN * * Form a unit triangular matrix T with condition CNDNUM. T is * given by * | 1 + * | * | 1 + | * T = | 1 + * | * | 1 + | * | 1 + * | * | 1 + | * | . . . | * Each element marked with a '*' is formed by taking the product * of the adjacent elements marked with '+'. The '*'s can be * chosen freely, and the '+'s are chosen so that the inverse of * T will have elements of the same magnitude as T. * * The two offdiagonals of T are stored in WORK. * STAR1 = TNORM*ZLARND( 5, ISEED ) SFAC = SQRT( TNORM ) PLUS1 = SFAC*ZLARND( 5, ISEED ) DO 110 J = 1, N, 2 PLUS2 = STAR1 / PLUS1 WORK( J ) = PLUS1 WORK( N+J ) = STAR1 IF( J+1.LE.N ) THEN WORK( J+1 ) = PLUS2 WORK( N+J+1 ) = ZERO PLUS1 = STAR1 / PLUS2 * * Generate a new *-value with norm between sqrt(TNORM) * and TNORM. * REXP = DLARND( 2, ISEED ) IF( REXP.LT.ZERO ) THEN STAR1 = -SFAC**( ONE-REXP )*ZLARND( 5, ISEED ) ELSE STAR1 = SFAC**( ONE+REXP )*ZLARND( 5, ISEED ) END IF END IF 110 CONTINUE * * Copy the tridiagonal T to AB. * IF( UPPER ) THEN CALL ZCOPY( N-1, WORK, 1, AB( KD, 2 ), LDAB ) CALL ZCOPY( N-2, WORK( N+1 ), 1, AB( KD-1, 3 ), LDAB ) ELSE CALL ZCOPY( N-1, WORK, 1, AB( 2, 1 ), LDAB ) CALL ZCOPY( N-2, WORK( N+1 ), 1, AB( 3, 1 ), LDAB ) END IF END IF * * IMAT > 9: Pathological test cases. These triangular matrices * are badly scaled or badly conditioned, so when used in solving a * triangular system they may cause overflow in the solution vector. * ELSE IF( IMAT.EQ.10 ) THEN * * Type 10: Generate a triangular matrix with elements between * -1 and 1. Give the diagonal norm 2 to make it well-conditioned. * Make the right hand side large so that it requires scaling. * IF( UPPER ) THEN DO 120 J = 1, N LENJ = MIN( J-1, KD ) CALL ZLARNV( 4, ISEED, LENJ, AB( KD+1-LENJ, J ) ) AB( KD+1, J ) = ZLARND( 5, ISEED )*TWO 120 CONTINUE ELSE DO 130 J = 1, N LENJ = MIN( N-J, KD ) IF( LENJ.GT.0 ) $ CALL ZLARNV( 4, ISEED, LENJ, AB( 2, J ) ) AB( 1, J ) = ZLARND( 5, ISEED )*TWO 130 CONTINUE END IF * * Set the right hand side so that the largest value is BIGNUM. * CALL ZLARNV( 2, ISEED, N, B ) IY = IZAMAX( N, B, 1 ) BNORM = ABS( B( IY ) ) BSCAL = BIGNUM / MAX( ONE, BNORM ) CALL ZDSCAL( N, BSCAL, B, 1 ) * ELSE IF( IMAT.EQ.11 ) THEN * * Type 11: Make the first diagonal element in the solve small to * cause immediate overflow when dividing by T(j,j). * In type 11, the offdiagonal elements are small (CNORM(j) < 1). * CALL ZLARNV( 2, ISEED, N, B ) TSCAL = ONE / DBLE( KD+1 ) IF( UPPER ) THEN DO 140 J = 1, N LENJ = MIN( J-1, KD ) IF( LENJ.GT.0 ) THEN CALL ZLARNV( 4, ISEED, LENJ, AB( KD+2-LENJ, J ) ) CALL ZDSCAL( LENJ, TSCAL, AB( KD+2-LENJ, J ), 1 ) END IF AB( KD+1, J ) = ZLARND( 5, ISEED ) 140 CONTINUE AB( KD+1, N ) = SMLNUM*AB( KD+1, N ) ELSE DO 150 J = 1, N LENJ = MIN( N-J, KD ) IF( LENJ.GT.0 ) THEN CALL ZLARNV( 4, ISEED, LENJ, AB( 2, J ) ) CALL ZDSCAL( LENJ, TSCAL, AB( 2, J ), 1 ) END IF AB( 1, J ) = ZLARND( 5, ISEED ) 150 CONTINUE AB( 1, 1 ) = SMLNUM*AB( 1, 1 ) END IF * ELSE IF( IMAT.EQ.12 ) THEN * * Type 12: Make the first diagonal element in the solve small to * cause immediate overflow when dividing by T(j,j). * In type 12, the offdiagonal elements are O(1) (CNORM(j) > 1). * CALL ZLARNV( 2, ISEED, N, B ) IF( UPPER ) THEN DO 160 J = 1, N LENJ = MIN( J-1, KD ) IF( LENJ.GT.0 ) $ CALL ZLARNV( 4, ISEED, LENJ, AB( KD+2-LENJ, J ) ) AB( KD+1, J ) = ZLARND( 5, ISEED ) 160 CONTINUE AB( KD+1, N ) = SMLNUM*AB( KD+1, N ) ELSE DO 170 J = 1, N LENJ = MIN( N-J, KD ) IF( LENJ.GT.0 ) $ CALL ZLARNV( 4, ISEED, LENJ, AB( 2, J ) ) AB( 1, J ) = ZLARND( 5, ISEED ) 170 CONTINUE AB( 1, 1 ) = SMLNUM*AB( 1, 1 ) END IF * ELSE IF( IMAT.EQ.13 ) THEN * * Type 13: T is diagonal with small numbers on the diagonal to * make the growth factor underflow, but a small right hand side * chosen so that the solution does not overflow. * IF( UPPER ) THEN JCOUNT = 1 DO 190 J = N, 1, -1 DO 180 I = MAX( 1, KD+1-( J-1 ) ), KD AB( I, J ) = ZERO 180 CONTINUE IF( JCOUNT.LE.2 ) THEN AB( KD+1, J ) = SMLNUM*ZLARND( 5, ISEED ) ELSE AB( KD+1, J ) = ZLARND( 5, ISEED ) END IF JCOUNT = JCOUNT + 1 IF( JCOUNT.GT.4 ) $ JCOUNT = 1 190 CONTINUE ELSE JCOUNT = 1 DO 210 J = 1, N DO 200 I = 2, MIN( N-J+1, KD+1 ) AB( I, J ) = ZERO 200 CONTINUE IF( JCOUNT.LE.2 ) THEN AB( 1, J ) = SMLNUM*ZLARND( 5, ISEED ) ELSE AB( 1, J ) = ZLARND( 5, ISEED ) END IF JCOUNT = JCOUNT + 1 IF( JCOUNT.GT.4 ) $ JCOUNT = 1 210 CONTINUE END IF * * Set the right hand side alternately zero and small. * IF( UPPER ) THEN B( 1 ) = ZERO DO 220 I = N, 2, -2 B( I ) = ZERO B( I-1 ) = SMLNUM*ZLARND( 5, ISEED ) 220 CONTINUE ELSE B( N ) = ZERO DO 230 I = 1, N - 1, 2 B( I ) = ZERO B( I+1 ) = SMLNUM*ZLARND( 5, ISEED ) 230 CONTINUE END IF * ELSE IF( IMAT.EQ.14 ) THEN * * Type 14: Make the diagonal elements small to cause gradual * overflow when dividing by T(j,j). To control the amount of * scaling needed, the matrix is bidiagonal. * TEXP = ONE / DBLE( KD+1 ) TSCAL = SMLNUM**TEXP CALL ZLARNV( 4, ISEED, N, B ) IF( UPPER ) THEN DO 250 J = 1, N DO 240 I = MAX( 1, KD+2-J ), KD AB( I, J ) = ZERO 240 CONTINUE IF( J.GT.1 .AND. KD.GT.0 ) $ AB( KD, J ) = DCMPLX( -ONE, -ONE ) AB( KD+1, J ) = TSCAL*ZLARND( 5, ISEED ) 250 CONTINUE B( N ) = DCMPLX( ONE, ONE ) ELSE DO 270 J = 1, N DO 260 I = 3, MIN( N-J+1, KD+1 ) AB( I, J ) = ZERO 260 CONTINUE IF( J.LT.N .AND. KD.GT.0 ) $ AB( 2, J ) = DCMPLX( -ONE, -ONE ) AB( 1, J ) = TSCAL*ZLARND( 5, ISEED ) 270 CONTINUE B( 1 ) = DCMPLX( ONE, ONE ) END IF * ELSE IF( IMAT.EQ.15 ) THEN * * Type 15: One zero diagonal element. * IY = N / 2 + 1 IF( UPPER ) THEN DO 280 J = 1, N LENJ = MIN( J, KD+1 ) CALL ZLARNV( 4, ISEED, LENJ, AB( KD+2-LENJ, J ) ) IF( J.NE.IY ) THEN AB( KD+1, J ) = ZLARND( 5, ISEED )*TWO ELSE AB( KD+1, J ) = ZERO END IF 280 CONTINUE ELSE DO 290 J = 1, N LENJ = MIN( N-J+1, KD+1 ) CALL ZLARNV( 4, ISEED, LENJ, AB( 1, J ) ) IF( J.NE.IY ) THEN AB( 1, J ) = ZLARND( 5, ISEED )*TWO ELSE AB( 1, J ) = ZERO END IF 290 CONTINUE END IF CALL ZLARNV( 2, ISEED, N, B ) CALL ZDSCAL( N, TWO, B, 1 ) * ELSE IF( IMAT.EQ.16 ) THEN * * Type 16: Make the offdiagonal elements large to cause overflow * when adding a column of T. In the non-transposed case, the * matrix is constructed to cause overflow when adding a column in * every other step. * TSCAL = UNFL / ULP TSCAL = ( ONE-ULP ) / TSCAL DO 310 J = 1, N DO 300 I = 1, KD + 1 AB( I, J ) = ZERO 300 CONTINUE 310 CONTINUE TEXP = ONE IF( KD.GT.0 ) THEN IF( UPPER ) THEN DO 330 J = N, 1, -KD DO 320 I = J, MAX( 1, J-KD+1 ), -2 AB( 1+( J-I ), I ) = -TSCAL / DBLE( KD+2 ) AB( KD+1, I ) = ONE B( I ) = TEXP*( ONE-ULP ) IF( I.GT.MAX( 1, J-KD+1 ) ) THEN AB( 2+( J-I ), I-1 ) = -( TSCAL / DBLE( KD+2 ) ) $ / DBLE( KD+3 ) AB( KD+1, I-1 ) = ONE B( I-1 ) = TEXP*DBLE( ( KD+1 )*( KD+1 )+KD ) END IF TEXP = TEXP*TWO 320 CONTINUE B( MAX( 1, J-KD+1 ) ) = ( DBLE( KD+2 ) / $ DBLE( KD+3 ) )*TSCAL 330 CONTINUE ELSE DO 350 J = 1, N, KD TEXP = ONE LENJ = MIN( KD+1, N-J+1 ) DO 340 I = J, MIN( N, J+KD-1 ), 2 AB( LENJ-( I-J ), J ) = -TSCAL / DBLE( KD+2 ) AB( 1, J ) = ONE B( J ) = TEXP*( ONE-ULP ) IF( I.LT.MIN( N, J+KD-1 ) ) THEN AB( LENJ-( I-J+1 ), I+1 ) = -( TSCAL / $ DBLE( KD+2 ) ) / DBLE( KD+3 ) AB( 1, I+1 ) = ONE B( I+1 ) = TEXP*DBLE( ( KD+1 )*( KD+1 )+KD ) END IF TEXP = TEXP*TWO 340 CONTINUE B( MIN( N, J+KD-1 ) ) = ( DBLE( KD+2 ) / $ DBLE( KD+3 ) )*TSCAL 350 CONTINUE END IF END IF * ELSE IF( IMAT.EQ.17 ) THEN * * Type 17: Generate a unit triangular matrix with elements * between -1 and 1, and make the right hand side large so that it * requires scaling. * IF( UPPER ) THEN DO 360 J = 1, N LENJ = MIN( J-1, KD ) CALL ZLARNV( 4, ISEED, LENJ, AB( KD+1-LENJ, J ) ) AB( KD+1, J ) = DBLE( J ) 360 CONTINUE ELSE DO 370 J = 1, N LENJ = MIN( N-J, KD ) IF( LENJ.GT.0 ) $ CALL ZLARNV( 4, ISEED, LENJ, AB( 2, J ) ) AB( 1, J ) = DBLE( J ) 370 CONTINUE END IF * * Set the right hand side so that the largest value is BIGNUM. * CALL ZLARNV( 2, ISEED, N, B ) IY = IZAMAX( N, B, 1 ) BNORM = ABS( B( IY ) ) BSCAL = BIGNUM / MAX( ONE, BNORM ) CALL ZDSCAL( N, BSCAL, B, 1 ) * ELSE IF( IMAT.EQ.18 ) THEN * * Type 18: Generate a triangular matrix with elements between * BIGNUM/(KD+1) and BIGNUM so that at least one of the column * norms will exceed BIGNUM. * 1/3/91: ZLATBS no longer can handle this case * TLEFT = BIGNUM / DBLE( KD+1 ) TSCAL = BIGNUM*( DBLE( KD+1 ) / DBLE( KD+2 ) ) IF( UPPER ) THEN DO 390 J = 1, N LENJ = MIN( J, KD+1 ) CALL ZLARNV( 5, ISEED, LENJ, AB( KD+2-LENJ, J ) ) CALL DLARNV( 1, ISEED, LENJ, RWORK( KD+2-LENJ ) ) DO 380 I = KD + 2 - LENJ, KD + 1 AB( I, J ) = AB( I, J )*( TLEFT+RWORK( I )*TSCAL ) 380 CONTINUE 390 CONTINUE ELSE DO 410 J = 1, N LENJ = MIN( N-J+1, KD+1 ) CALL ZLARNV( 5, ISEED, LENJ, AB( 1, J ) ) CALL DLARNV( 1, ISEED, LENJ, RWORK ) DO 400 I = 1, LENJ AB( I, J ) = AB( I, J )*( TLEFT+RWORK( I )*TSCAL ) 400 CONTINUE 410 CONTINUE END IF CALL ZLARNV( 2, ISEED, N, B ) CALL ZDSCAL( N, TWO, B, 1 ) END IF * * Flip the matrix if the transpose will be used. * IF( .NOT.LSAME( TRANS, 'N' ) ) THEN IF( UPPER ) THEN DO 420 J = 1, N / 2 LENJ = MIN( N-2*J+1, KD+1 ) CALL ZSWAP( LENJ, AB( KD+1, J ), LDAB-1, $ AB( KD+2-LENJ, N-J+1 ), -1 ) 420 CONTINUE ELSE DO 430 J = 1, N / 2 LENJ = MIN( N-2*J+1, KD+1 ) CALL ZSWAP( LENJ, AB( 1, J ), 1, AB( LENJ, N-J+2-LENJ ), $ -LDAB+1 ) 430 CONTINUE END IF END IF * RETURN * * End of ZLATTB * END