numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/zspt03.f 7937B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
*> \brief \b ZSPT03
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
*                          RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDW, N
*       DOUBLE PRECISION   RCOND, RESID
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         A( * ), AINV( * ), WORK( LDW, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZSPT03 computes the residual for a complex symmetric packed matrix
*> times its inverse:
*>    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          complex symmetric matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (N*(N+1)/2)
*>          The original complex symmetric matrix A, stored as a packed
*>          triangular matrix.
*> \endverbatim
*>
*> \param[in] AINV
*> \verbatim
*>          AINV is COMPLEX*16 array, dimension (N*(N+1)/2)
*>          The (symmetric) inverse of the matrix A, stored as a packed
*>          triangular matrix.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (LDW,N)
*> \endverbatim
*>
*> \param[in] LDW
*> \verbatim
*>          LDW is INTEGER
*>          The leading dimension of the array WORK.  LDW >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>          The reciprocal of the condition number of A, computed as
*>          ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
     $                   RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDW, N
      DOUBLE PRECISION   RCOND, RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( * ), AINV( * ), WORK( LDW, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICOL, J, JCOL, K, KCOL, NALL
      DOUBLE PRECISION   AINVNM, ANORM, EPS
      COMPLEX*16         T
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSP
      COMPLEX*16         ZDOTU
      EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANSP, ZDOTU
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RCOND = ONE
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = ZLANSP( '1', UPLO, N, A, RWORK )
      AINVNM = ZLANSP( '1', UPLO, N, AINV, RWORK )
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
         RCOND = ZERO
         RESID = ONE / EPS
         RETURN
      END IF
      RCOND = ( ONE / ANORM ) / AINVNM
*
*     Case where both A and AINV are upper triangular:
*     Each element of - A * AINV is computed by taking the dot product
*     of a row of A with a column of AINV.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 70 I = 1, N
            ICOL = ( ( I-1 )*I ) / 2 + 1
*
*           Code when J <= I
*
            DO 30 J = 1, I
               JCOL = ( ( J-1 )*J ) / 2 + 1
               T = ZDOTU( J, A( ICOL ), 1, AINV( JCOL ), 1 )
               JCOL = JCOL + 2*J - 1
               KCOL = ICOL - 1
               DO 10 K = J + 1, I
                  T = T + A( KCOL+K )*AINV( JCOL )
                  JCOL = JCOL + K
   10          CONTINUE
               KCOL = KCOL + 2*I
               DO 20 K = I + 1, N
                  T = T + A( KCOL )*AINV( JCOL )
                  KCOL = KCOL + K
                  JCOL = JCOL + K
   20          CONTINUE
               WORK( I, J ) = -T
   30       CONTINUE
*
*           Code when J > I
*
            DO 60 J = I + 1, N
               JCOL = ( ( J-1 )*J ) / 2 + 1
               T = ZDOTU( I, A( ICOL ), 1, AINV( JCOL ), 1 )
               JCOL = JCOL - 1
               KCOL = ICOL + 2*I - 1
               DO 40 K = I + 1, J
                  T = T + A( KCOL )*AINV( JCOL+K )
                  KCOL = KCOL + K
   40          CONTINUE
               JCOL = JCOL + 2*J
               DO 50 K = J + 1, N
                  T = T + A( KCOL )*AINV( JCOL )
                  KCOL = KCOL + K
                  JCOL = JCOL + K
   50          CONTINUE
               WORK( I, J ) = -T
   60       CONTINUE
   70    CONTINUE
      ELSE
*
*        Case where both A and AINV are lower triangular
*
         NALL = ( N*( N+1 ) ) / 2
         DO 140 I = 1, N
*
*           Code when J <= I
*
            ICOL = NALL - ( ( N-I+1 )*( N-I+2 ) ) / 2 + 1
            DO 100 J = 1, I
               JCOL = NALL - ( ( N-J )*( N-J+1 ) ) / 2 - ( N-I )
               T = ZDOTU( N-I+1, A( ICOL ), 1, AINV( JCOL ), 1 )
               KCOL = I
               JCOL = J
               DO 80 K = 1, J - 1
                  T = T + A( KCOL )*AINV( JCOL )
                  JCOL = JCOL + N - K
                  KCOL = KCOL + N - K
   80          CONTINUE
               JCOL = JCOL - J
               DO 90 K = J, I - 1
                  T = T + A( KCOL )*AINV( JCOL+K )
                  KCOL = KCOL + N - K
   90          CONTINUE
               WORK( I, J ) = -T
  100       CONTINUE
*
*           Code when J > I
*
            ICOL = NALL - ( ( N-I )*( N-I+1 ) ) / 2
            DO 130 J = I + 1, N
               JCOL = NALL - ( ( N-J+1 )*( N-J+2 ) ) / 2 + 1
               T = ZDOTU( N-J+1, A( ICOL-N+J ), 1, AINV( JCOL ), 1 )
               KCOL = I
               JCOL = J
               DO 110 K = 1, I - 1
                  T = T + A( KCOL )*AINV( JCOL )
                  JCOL = JCOL + N - K
                  KCOL = KCOL + N - K
  110          CONTINUE
               KCOL = KCOL - I
               DO 120 K = I, J - 1
                  T = T + A( KCOL+K )*AINV( JCOL )
                  JCOL = JCOL + N - K
  120          CONTINUE
               WORK( I, J ) = -T
  130       CONTINUE
  140    CONTINUE
      END IF
*
*     Add the identity matrix to WORK .
*
      DO 150 I = 1, N
         WORK( I, I ) = WORK( I, I ) + ONE
  150 CONTINUE
*
*     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
      RESID = ZLANGE( '1', N, N, WORK, LDW, RWORK )
*
      RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
*
      RETURN
*
*     End of ZSPT03
*
      END