numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/LIN/ztbt06.f | 5640B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
*> \brief \b ZTBT06 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZTBT06( RCOND, RCONDC, UPLO, DIAG, N, KD, AB, LDAB, * RWORK, RAT ) * * .. Scalar Arguments .. * CHARACTER DIAG, UPLO * INTEGER KD, LDAB, N * DOUBLE PRECISION RAT, RCOND, RCONDC * .. * .. Array Arguments .. * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 AB( LDAB, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZTBT06 computes a test ratio comparing RCOND (the reciprocal *> condition number of a triangular matrix A) and RCONDC, the estimate *> computed by ZTBCON. Information about the triangular matrix A is *> used if one estimate is zero and the other is non-zero to decide if *> underflow in the estimate is justified. *> \endverbatim * * Arguments: * ========== * *> \param[in] RCOND *> \verbatim *> RCOND is DOUBLE PRECISION *> The estimate of the reciprocal condition number obtained by *> forming the explicit inverse of the matrix A and computing *> RCOND = 1/( norm(A) * norm(inv(A)) ). *> \endverbatim *> *> \param[in] RCONDC *> \verbatim *> RCONDC is DOUBLE PRECISION *> The estimate of the reciprocal condition number computed by *> ZTBCON. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER *> Specifies whether the matrix A is upper or lower triangular. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER *> Specifies whether or not the matrix A is unit triangular. *> = 'N': Non-unit triangular *> = 'U': Unit triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KD *> \verbatim *> KD is INTEGER *> The number of superdiagonals or subdiagonals of the *> triangular band matrix A. KD >= 0. *> \endverbatim *> *> \param[in] AB *> \verbatim *> AB is COMPLEX*16 array, dimension (LDAB,N) *> The upper or lower triangular band matrix A, stored in the *> first kd+1 rows of the array. The j-th column of A is stored *> in the j-th column of the array AB as follows: *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array AB. LDAB >= KD+1. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RAT *> \verbatim *> RAT is DOUBLE PRECISION *> The test ratio. If both RCOND and RCONDC are nonzero, *> RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1. *> If RAT = 0, the two estimates are exactly the same. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZTBT06( RCOND, RCONDC, UPLO, DIAG, N, KD, AB, LDAB, $ RWORK, RAT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER DIAG, UPLO INTEGER KD, LDAB, N DOUBLE PRECISION RAT, RCOND, RCONDC * .. * .. Array Arguments .. DOUBLE PRECISION RWORK( * ) COMPLEX*16 AB( LDAB, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. DOUBLE PRECISION ANORM, BIGNUM, EPS, RMAX, RMIN * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANTB EXTERNAL DLAMCH, ZLANTB * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * EPS = DLAMCH( 'Epsilon' ) RMAX = MAX( RCOND, RCONDC ) RMIN = MIN( RCOND, RCONDC ) * * Do the easy cases first. * IF( RMIN.LT.ZERO ) THEN * * Invalid value for RCOND or RCONDC, return 1/EPS. * RAT = ONE / EPS * ELSE IF( RMIN.GT.ZERO ) THEN * * Both estimates are positive, return RMAX/RMIN - 1. * RAT = RMAX / RMIN - ONE * ELSE IF( RMAX.EQ.ZERO ) THEN * * Both estimates zero. * RAT = ZERO * ELSE * * One estimate is zero, the other is non-zero. If the matrix is * ill-conditioned, return the nonzero estimate multiplied by * 1/EPS; if the matrix is badly scaled, return the nonzero * estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum * element in absolute value in A. * BIGNUM = ONE / DLAMCH( 'Safe minimum' ) ANORM = ZLANTB( 'M', UPLO, DIAG, N, KD, AB, LDAB, RWORK ) * RAT = RMAX*( MIN( BIGNUM / MAX( ONE, ANORM ), ONE / EPS ) ) END IF * RETURN * * End of ZTBT06 * END