numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/LIN/ztbt06.f 5640B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
*> \brief \b ZTBT06
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZTBT06( RCOND, RCONDC, UPLO, DIAG, N, KD, AB, LDAB,
*                          RWORK, RAT )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, UPLO
*       INTEGER            KD, LDAB, N
*       DOUBLE PRECISION   RAT, RCOND, RCONDC
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         AB( LDAB, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZTBT06 computes a test ratio comparing RCOND (the reciprocal
*> condition number of a triangular matrix A) and RCONDC, the estimate
*> computed by ZTBCON.  Information about the triangular matrix A is
*> used if one estimate is zero and the other is non-zero to decide if
*> underflow in the estimate is justified.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>          The estimate of the reciprocal condition number obtained by
*>          forming the explicit inverse of the matrix A and computing
*>          RCOND = 1/( norm(A) * norm(inv(A)) ).
*> \endverbatim
*>
*> \param[in] RCONDC
*> \verbatim
*>          RCONDC is DOUBLE PRECISION
*>          The estimate of the reciprocal condition number computed by
*>          ZTBCON.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals or subdiagonals of the
*>          triangular band matrix A.  KD >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is COMPLEX*16 array, dimension (LDAB,N)
*>          The upper or lower triangular band matrix A, stored in the
*>          first kd+1 rows of the array. The j-th column of A is stored
*>          in the j-th column of the array AB as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD+1.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RAT
*> \verbatim
*>          RAT is DOUBLE PRECISION
*>          The test ratio.  If both RCOND and RCONDC are nonzero,
*>             RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1.
*>          If RAT = 0, the two estimates are exactly the same.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZTBT06( RCOND, RCONDC, UPLO, DIAG, N, KD, AB, LDAB,
     $                   RWORK, RAT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, UPLO
      INTEGER            KD, LDAB, N
      DOUBLE PRECISION   RAT, RCOND, RCONDC
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         AB( LDAB, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   ANORM, BIGNUM, EPS, RMAX, RMIN
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANTB
      EXTERNAL           DLAMCH, ZLANTB
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'Epsilon' )
      RMAX = MAX( RCOND, RCONDC )
      RMIN = MIN( RCOND, RCONDC )
*
*     Do the easy cases first.
*
      IF( RMIN.LT.ZERO ) THEN
*
*        Invalid value for RCOND or RCONDC, return 1/EPS.
*
         RAT = ONE / EPS
*
      ELSE IF( RMIN.GT.ZERO ) THEN
*
*        Both estimates are positive, return RMAX/RMIN - 1.
*
         RAT = RMAX / RMIN - ONE
*
      ELSE IF( RMAX.EQ.ZERO ) THEN
*
*        Both estimates zero.
*
         RAT = ZERO
*
      ELSE
*
*        One estimate is zero, the other is non-zero.  If the matrix is
*        ill-conditioned, return the nonzero estimate multiplied by
*        1/EPS; if the matrix is badly scaled, return the nonzero
*        estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum
*        element in absolute value in A.
*
         BIGNUM = ONE / DLAMCH( 'Safe minimum' )
         ANORM = ZLANTB( 'M', UPLO, DIAG, N, KD, AB, LDAB, RWORK )
*
         RAT = RMAX*( MIN( BIGNUM / MAX( ONE, ANORM ), ONE / EPS ) )
      END IF
*
      RETURN
*
*     End of ZTBT06
*
      END