numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/MATGEN/clarnd.f 3858B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
*> \brief \b CLARND
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       COMPLEX FUNCTION CLARND( IDIST, ISEED )
*
*       .. Scalar Arguments ..
*       INTEGER            IDIST
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLARND returns a random complex number from a uniform or normal
*> distribution.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] IDIST
*> \verbatim
*>          IDIST is INTEGER
*>          Specifies the distribution of the random numbers:
*>          = 1:  real and imaginary parts each uniform (0,1)
*>          = 2:  real and imaginary parts each uniform (-1,1)
*>          = 3:  real and imaginary parts each normal (0,1)
*>          = 4:  uniformly distributed on the disc abs(z) <= 1
*>          = 5:  uniformly distributed on the circle abs(z) = 1
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry, the seed of the random number generator; the array
*>          elements must be between 0 and 4095, and ISEED(4) must be
*>          odd.
*>          On exit, the seed is updated.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_matgen
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  This routine calls the auxiliary routine SLARAN to generate a random
*>  real number from a uniform (0,1) distribution. The Box-Muller method
*>  is used to transform numbers from a uniform to a normal distribution.
*> \endverbatim
*>
*  =====================================================================
      COMPLEX FUNCTION CLARND( IDIST, ISEED )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            IDIST
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
      REAL               TWOPI
      PARAMETER  ( TWOPI = 6.28318530717958647692528676655900576839E+0 )
*     ..
*     .. Local Scalars ..
      REAL               T1, T2
*     ..
*     .. External Functions ..
      REAL               SLARAN
      EXTERNAL           SLARAN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, EXP, LOG, SQRT
*     ..
*     .. Executable Statements ..
*
*     Generate a pair of real random numbers from a uniform (0,1)
*     distribution
*
      T1 = SLARAN( ISEED )
      T2 = SLARAN( ISEED )
*
      IF( IDIST.EQ.1 ) THEN
*
*        real and imaginary parts each uniform (0,1)
*
         CLARND = CMPLX( T1, T2 )
      ELSE IF( IDIST.EQ.2 ) THEN
*
*        real and imaginary parts each uniform (-1,1)
*
         CLARND = CMPLX( TWO*T1-ONE, TWO*T2-ONE )
      ELSE IF( IDIST.EQ.3 ) THEN
*
*        real and imaginary parts each normal (0,1)
*
         CLARND = SQRT( -TWO*LOG( T1 ) )*
     $            EXP( CMPLX( ZERO, TWOPI*T2 ) )
      ELSE IF( IDIST.EQ.4 ) THEN
*
*        uniform distribution on the unit disc abs(z) <= 1
*
         CLARND = SQRT( T1 )*EXP( CMPLX( ZERO, TWOPI*T2 ) )
      ELSE IF( IDIST.EQ.5 ) THEN
*
*        uniform distribution on the unit circle abs(z) = 1
*
         CLARND = EXP( CMPLX( ZERO, TWOPI*T2 ) )
      END IF
      RETURN
*
*     End of CLARND
*
      END