numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/MATGEN/clarnd.f | 3858B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
*> \brief \b CLARND * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * COMPLEX FUNCTION CLARND( IDIST, ISEED ) * * .. Scalar Arguments .. * INTEGER IDIST * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLARND returns a random complex number from a uniform or normal *> distribution. *> \endverbatim * * Arguments: * ========== * *> \param[in] IDIST *> \verbatim *> IDIST is INTEGER *> Specifies the distribution of the random numbers: *> = 1: real and imaginary parts each uniform (0,1) *> = 2: real and imaginary parts each uniform (-1,1) *> = 3: real and imaginary parts each normal (0,1) *> = 4: uniformly distributed on the disc abs(z) <= 1 *> = 5: uniformly distributed on the circle abs(z) = 1 *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry, the seed of the random number generator; the array *> elements must be between 0 and 4095, and ISEED(4) must be *> odd. *> On exit, the seed is updated. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_matgen * *> \par Further Details: * ===================== *> *> \verbatim *> *> This routine calls the auxiliary routine SLARAN to generate a random *> real number from a uniform (0,1) distribution. The Box-Muller method *> is used to transform numbers from a uniform to a normal distribution. *> \endverbatim *> * ===================================================================== COMPLEX FUNCTION CLARND( IDIST, ISEED ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IDIST * .. * .. Array Arguments .. INTEGER ISEED( 4 ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, TWO PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 ) REAL TWOPI PARAMETER ( TWOPI = 6.28318530717958647692528676655900576839E+0 ) * .. * .. Local Scalars .. REAL T1, T2 * .. * .. External Functions .. REAL SLARAN EXTERNAL SLARAN * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, EXP, LOG, SQRT * .. * .. Executable Statements .. * * Generate a pair of real random numbers from a uniform (0,1) * distribution * T1 = SLARAN( ISEED ) T2 = SLARAN( ISEED ) * IF( IDIST.EQ.1 ) THEN * * real and imaginary parts each uniform (0,1) * CLARND = CMPLX( T1, T2 ) ELSE IF( IDIST.EQ.2 ) THEN * * real and imaginary parts each uniform (-1,1) * CLARND = CMPLX( TWO*T1-ONE, TWO*T2-ONE ) ELSE IF( IDIST.EQ.3 ) THEN * * real and imaginary parts each normal (0,1) * CLARND = SQRT( -TWO*LOG( T1 ) )* $ EXP( CMPLX( ZERO, TWOPI*T2 ) ) ELSE IF( IDIST.EQ.4 ) THEN * * uniform distribution on the unit disc abs(z) <= 1 * CLARND = SQRT( T1 )*EXP( CMPLX( ZERO, TWOPI*T2 ) ) ELSE IF( IDIST.EQ.5 ) THEN * * uniform distribution on the unit circle abs(z) = 1 * CLARND = EXP( CMPLX( ZERO, TWOPI*T2 ) ) END IF RETURN * * End of CLARND * END