numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/MATGEN/clatmt.f 46202B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
*> \brief \b CLATMT
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLATMT( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
*                          RANK, KL, KU, PACK, A, LDA, WORK, INFO )
*
*       .. Scalar Arguments ..
*       REAL               COND, DMAX
*       INTEGER            INFO, KL, KU, LDA, M, MODE, N, RANK
*       CHARACTER          DIST, PACK, SYM
*       ..
*       .. Array Arguments ..
*       COMPLEX            A( LDA, * ), WORK( * )
*       REAL               D( * )
*       INTEGER            ISEED( 4 )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    CLATMT generates random matrices with specified singular values
*>    (or hermitian with specified eigenvalues)
*>    for testing LAPACK programs.
*>
*>    CLATMT operates by applying the following sequence of
*>    operations:
*>
*>      Set the diagonal to D, where D may be input or
*>         computed according to MODE, COND, DMAX, and SYM
*>         as described below.
*>
*>      Generate a matrix with the appropriate band structure, by one
*>         of two methods:
*>
*>      Method A:
*>          Generate a dense M x N matrix by multiplying D on the left
*>              and the right by random unitary matrices, then:
*>
*>          Reduce the bandwidth according to KL and KU, using
*>              Householder transformations.
*>
*>      Method B:
*>          Convert the bandwidth-0 (i.e., diagonal) matrix to a
*>              bandwidth-1 matrix using Givens rotations, "chasing"
*>              out-of-band elements back, much as in QR; then convert
*>              the bandwidth-1 to a bandwidth-2 matrix, etc.  Note
*>              that for reasonably small bandwidths (relative to M and
*>              N) this requires less storage, as a dense matrix is not
*>              generated.  Also, for hermitian or symmetric matrices,
*>              only one triangle is generated.
*>
*>      Method A is chosen if the bandwidth is a large fraction of the
*>          order of the matrix, and LDA is at least M (so a dense
*>          matrix can be stored.)  Method B is chosen if the bandwidth
*>          is small (< 1/2 N for hermitian or symmetric, < .3 N+M for
*>          non-symmetric), or LDA is less than M and not less than the
*>          bandwidth.
*>
*>      Pack the matrix if desired. Options specified by PACK are:
*>         no packing
*>         zero out upper half (if hermitian)
*>         zero out lower half (if hermitian)
*>         store the upper half columnwise (if hermitian or upper
*>               triangular)
*>         store the lower half columnwise (if hermitian or lower
*>               triangular)
*>         store the lower triangle in banded format (if hermitian or
*>               lower triangular)
*>         store the upper triangle in banded format (if hermitian or
*>               upper triangular)
*>         store the entire matrix in banded format
*>      If Method B is chosen, and band format is specified, then the
*>         matrix will be generated in the band format, so no repacking
*>         will be necessary.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           The number of rows of A. Not modified.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           The number of columns of A. N must equal M if the matrix
*>           is symmetric or hermitian (i.e., if SYM is not 'N')
*>           Not modified.
*> \endverbatim
*>
*> \param[in] DIST
*> \verbatim
*>          DIST is CHARACTER*1
*>           On entry, DIST specifies the type of distribution to be used
*>           to generate the random eigen-/singular values.
*>           'U' => UNIFORM( 0, 1 )  ( 'U' for uniform )
*>           'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
*>           'N' => NORMAL( 0, 1 )   ( 'N' for normal )
*>           Not modified.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension ( 4 )
*>           On entry ISEED specifies the seed of the random number
*>           generator. They should lie between 0 and 4095 inclusive,
*>           and ISEED(4) should be odd. The random number generator
*>           uses a linear congruential sequence limited to small
*>           integers, and so should produce machine independent
*>           random numbers. The values of ISEED are changed on
*>           exit, and can be used in the next call to CLATMT
*>           to continue the same random number sequence.
*>           Changed on exit.
*> \endverbatim
*>
*> \param[in] SYM
*> \verbatim
*>          SYM is CHARACTER*1
*>           If SYM='H', the generated matrix is hermitian, with
*>             eigenvalues specified by D, COND, MODE, and DMAX; they
*>             may be positive, negative, or zero.
*>           If SYM='P', the generated matrix is hermitian, with
*>             eigenvalues (= singular values) specified by D, COND,
*>             MODE, and DMAX; they will not be negative.
*>           If SYM='N', the generated matrix is nonsymmetric, with
*>             singular values specified by D, COND, MODE, and DMAX;
*>             they will not be negative.
*>           If SYM='S', the generated matrix is (complex) symmetric,
*>             with singular values specified by D, COND, MODE, and
*>             DMAX; they will not be negative.
*>           Not modified.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is REAL array, dimension ( MIN( M, N ) )
*>           This array is used to specify the singular values or
*>           eigenvalues of A (see SYM, above.)  If MODE=0, then D is
*>           assumed to contain the singular/eigenvalues, otherwise
*>           they will be computed according to MODE, COND, and DMAX,
*>           and placed in D.
*>           Modified if MODE is nonzero.
*> \endverbatim
*>
*> \param[in] MODE
*> \verbatim
*>          MODE is INTEGER
*>           On entry this describes how the singular/eigenvalues are to
*>           be specified:
*>           MODE = 0 means use D as input
*>           MODE = 1 sets D(1)=1 and D(2:RANK)=1.0/COND
*>           MODE = 2 sets D(1:RANK-1)=1 and D(RANK)=1.0/COND
*>           MODE = 3 sets D(I)=COND**(-(I-1)/(RANK-1))
*>           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
*>           MODE = 5 sets D to random numbers in the range
*>                    ( 1/COND , 1 ) such that their logarithms
*>                    are uniformly distributed.
*>           MODE = 6 set D to random numbers from same distribution
*>                    as the rest of the matrix.
*>           MODE < 0 has the same meaning as ABS(MODE), except that
*>              the order of the elements of D is reversed.
*>           Thus if MODE is positive, D has entries ranging from
*>              1 to 1/COND, if negative, from 1/COND to 1,
*>           If SYM='H', and MODE is neither 0, 6, nor -6, then
*>              the elements of D will also be multiplied by a random
*>              sign (i.e., +1 or -1.)
*>           Not modified.
*> \endverbatim
*>
*> \param[in] COND
*> \verbatim
*>          COND is REAL
*>           On entry, this is used as described under MODE above.
*>           If used, it must be >= 1. Not modified.
*> \endverbatim
*>
*> \param[in] DMAX
*> \verbatim
*>          DMAX is REAL
*>           If MODE is neither -6, 0 nor 6, the contents of D, as
*>           computed according to MODE and COND, will be scaled by
*>           DMAX / max(abs(D(i))); thus, the maximum absolute eigen- or
*>           singular value (which is to say the norm) will be abs(DMAX).
*>           Note that DMAX need not be positive: if DMAX is negative
*>           (or zero), D will be scaled by a negative number (or zero).
*>           Not modified.
*> \endverbatim
*>
*> \param[in] RANK
*> \verbatim
*>          RANK is INTEGER
*>           The rank of matrix to be generated for modes 1,2,3 only.
*>           D( RANK+1:N ) = 0.
*>           Not modified.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>           This specifies the lower bandwidth of the  matrix. For
*>           example, KL=0 implies upper triangular, KL=1 implies upper
*>           Hessenberg, and KL being at least M-1 means that the matrix
*>           has full lower bandwidth.  KL must equal KU if the matrix
*>           is symmetric or hermitian.
*>           Not modified.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>           This specifies the upper bandwidth of the  matrix. For
*>           example, KU=0 implies lower triangular, KU=1 implies lower
*>           Hessenberg, and KU being at least N-1 means that the matrix
*>           has full upper bandwidth.  KL must equal KU if the matrix
*>           is symmetric or hermitian.
*>           Not modified.
*> \endverbatim
*>
*> \param[in] PACK
*> \verbatim
*>          PACK is CHARACTER*1
*>           This specifies packing of matrix as follows:
*>           'N' => no packing
*>           'U' => zero out all subdiagonal entries (if symmetric
*>                  or hermitian)
*>           'L' => zero out all superdiagonal entries (if symmetric
*>                  or hermitian)
*>           'C' => store the upper triangle columnwise (only if the
*>                  matrix is symmetric, hermitian, or upper triangular)
*>           'R' => store the lower triangle columnwise (only if the
*>                  matrix is symmetric, hermitian, or lower triangular)
*>           'B' => store the lower triangle in band storage scheme
*>                  (only if the matrix is symmetric, hermitian, or
*>                  lower triangular)
*>           'Q' => store the upper triangle in band storage scheme
*>                  (only if the matrix is symmetric, hermitian, or
*>                  upper triangular)
*>           'Z' => store the entire matrix in band storage scheme
*>                      (pivoting can be provided for by using this
*>                      option to store A in the trailing rows of
*>                      the allocated storage)
*>
*>           Using these options, the various LAPACK packed and banded
*>           storage schemes can be obtained:
*>           GB                    - use 'Z'
*>           PB, SB, HB, or TB     - use 'B' or 'Q'
*>           PP, SP, HB, or TP     - use 'C' or 'R'
*>
*>           If two calls to CLATMT differ only in the PACK parameter,
*>           they will generate mathematically equivalent matrices.
*>           Not modified.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension ( LDA, N )
*>           On exit A is the desired test matrix.  A is first generated
*>           in full (unpacked) form, and then packed, if so specified
*>           by PACK.  Thus, the first M elements of the first N
*>           columns will always be modified.  If PACK specifies a
*>           packed or banded storage scheme, all LDA elements of the
*>           first N columns will be modified; the elements of the
*>           array which do not correspond to elements of the generated
*>           matrix are set to zero.
*>           Modified.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           LDA specifies the first dimension of A as declared in the
*>           calling program.  If PACK='N', 'U', 'L', 'C', or 'R', then
*>           LDA must be at least M.  If PACK='B' or 'Q', then LDA must
*>           be at least MIN( KL, M-1) (which is equal to MIN(KU,N-1)).
*>           If PACK='Z', LDA must be large enough to hold the packed
*>           array: MIN( KU, N-1) + MIN( KL, M-1) + 1.
*>           Not modified.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension ( 3*MAX( N, M ) )
*>           Workspace.
*>           Modified.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>           Error code.  On exit, INFO will be set to one of the
*>           following values:
*>             0 => normal return
*>            -1 => M negative or unequal to N and SYM='S', 'H', or 'P'
*>            -2 => N negative
*>            -3 => DIST illegal string
*>            -5 => SYM illegal string
*>            -7 => MODE not in range -6 to 6
*>            -8 => COND less than 1.0, and MODE neither -6, 0 nor 6
*>           -10 => KL negative
*>           -11 => KU negative, or SYM is not 'N' and KU is not equal to
*>                  KL
*>           -12 => PACK illegal string, or PACK='U' or 'L', and SYM='N';
*>                  or PACK='C' or 'Q' and SYM='N' and KL is not zero;
*>                  or PACK='R' or 'B' and SYM='N' and KU is not zero;
*>                  or PACK='U', 'L', 'C', 'R', 'B', or 'Q', and M is not
*>                  N.
*>           -14 => LDA is less than M, or PACK='Z' and LDA is less than
*>                  MIN(KU,N-1) + MIN(KL,M-1) + 1.
*>            1  => Error return from SLATM7
*>            2  => Cannot scale to DMAX (max. sing. value is 0)
*>            3  => Error return from CLAGGE, CLAGHE or CLAGSY
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_matgen
*
*  =====================================================================
      SUBROUTINE CLATMT( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
     $                   RANK, KL, KU, PACK, A, LDA, WORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      REAL               COND, DMAX
      INTEGER            INFO, KL, KU, LDA, M, MODE, N, RANK
      CHARACTER          DIST, PACK, SYM
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), WORK( * )
      REAL               D( * )
      INTEGER            ISEED( 4 )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
      REAL               TWOPI
      PARAMETER  ( TWOPI = 6.28318530717958647692528676655900576839E+0 )
*     ..
*     .. Local Scalars ..
      COMPLEX            C, CT, CTEMP, DUMMY, EXTRA, S, ST
      REAL               ALPHA, ANGLE, REALC, TEMP
      INTEGER            I, IC, ICOL, IDIST, IENDCH, IINFO, IL, ILDA,
     $                   IOFFG, IOFFST, IPACK, IPACKG, IR, IR1, IR2,
     $                   IROW, IRSIGN, ISKEW, ISYM, ISYMPK, J, JC, JCH,
     $                   JKL, JKU, JR, K, LLB, MINLDA, MNMIN, MR, NC,
     $                   UUB
      LOGICAL            CSYM, GIVENS, ILEXTR, ILTEMP, TOPDWN
*     ..
*     .. External Functions ..
      COMPLEX            CLARND
      REAL               SLARND
      LOGICAL            LSAME
      EXTERNAL           CLARND, SLARND, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAGGE, CLAGHE, CLAGSY,
     $                   CLAROT, CLARTG, CLASET,
     $                   SLATM7, SSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, CONJG, COS, MAX, MIN, MOD, REAL,
     $                   SIN
*     ..
*     .. Executable Statements ..
*
*     1)      Decode and Test the input parameters.
*             Initialize flags & seed.
*
      INFO = 0
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Decode DIST
*
      IF( LSAME( DIST, 'U' ) ) THEN
         IDIST = 1
      ELSE IF( LSAME( DIST, 'S' ) ) THEN
         IDIST = 2
      ELSE IF( LSAME( DIST, 'N' ) ) THEN
         IDIST = 3
      ELSE
         IDIST = -1
      END IF
*
*     Decode SYM
*
      IF( LSAME( SYM, 'N' ) ) THEN
         ISYM = 1
         IRSIGN = 0
         CSYM = .FALSE.
      ELSE IF( LSAME( SYM, 'P' ) ) THEN
         ISYM = 2
         IRSIGN = 0
         CSYM = .FALSE.
      ELSE IF( LSAME( SYM, 'S' ) ) THEN
         ISYM = 2
         IRSIGN = 0
         CSYM = .TRUE.
      ELSE IF( LSAME( SYM, 'H' ) ) THEN
         ISYM = 2
         IRSIGN = 1
         CSYM = .FALSE.
      ELSE
         ISYM = -1
      END IF
*
*     Decode PACK
*
      ISYMPK = 0
      IF( LSAME( PACK, 'N' ) ) THEN
         IPACK = 0
      ELSE IF( LSAME( PACK, 'U' ) ) THEN
         IPACK = 1
         ISYMPK = 1
      ELSE IF( LSAME( PACK, 'L' ) ) THEN
         IPACK = 2
         ISYMPK = 1
      ELSE IF( LSAME( PACK, 'C' ) ) THEN
         IPACK = 3
         ISYMPK = 2
      ELSE IF( LSAME( PACK, 'R' ) ) THEN
         IPACK = 4
         ISYMPK = 3
      ELSE IF( LSAME( PACK, 'B' ) ) THEN
         IPACK = 5
         ISYMPK = 3
      ELSE IF( LSAME( PACK, 'Q' ) ) THEN
         IPACK = 6
         ISYMPK = 2
      ELSE IF( LSAME( PACK, 'Z' ) ) THEN
         IPACK = 7
      ELSE
         IPACK = -1
      END IF
*
*     Set certain internal parameters
*
      MNMIN = MIN( M, N )
      LLB = MIN( KL, M-1 )
      UUB = MIN( KU, N-1 )
      MR = MIN( M, N+LLB )
      NC = MIN( N, M+UUB )
*
      IF( IPACK.EQ.5 .OR. IPACK.EQ.6 ) THEN
         MINLDA = UUB + 1
      ELSE IF( IPACK.EQ.7 ) THEN
         MINLDA = LLB + UUB + 1
      ELSE
         MINLDA = M
      END IF
*
*     Use Givens rotation method if bandwidth small enough,
*     or if LDA is too small to store the matrix unpacked.
*
      GIVENS = .FALSE.
      IF( ISYM.EQ.1 ) THEN
         IF( REAL( LLB+UUB ).LT.0.3*REAL( MAX( 1, MR+NC ) ) )
     $      GIVENS = .TRUE.
      ELSE
         IF( 2*LLB.LT.M )
     $      GIVENS = .TRUE.
      END IF
      IF( LDA.LT.M .AND. LDA.GE.MINLDA )
     $   GIVENS = .TRUE.
*
*     Set INFO if an error
*
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.NE.N .AND. ISYM.NE.1 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( IDIST.EQ.-1 ) THEN
         INFO = -3
      ELSE IF( ISYM.EQ.-1 ) THEN
         INFO = -5
      ELSE IF( ABS( MODE ).GT.6 ) THEN
         INFO = -7
      ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE )
     $         THEN
         INFO = -8
      ELSE IF( KL.LT.0 ) THEN
         INFO = -10
      ELSE IF( KU.LT.0 .OR. ( ISYM.NE.1 .AND. KL.NE.KU ) ) THEN
         INFO = -11
      ELSE IF( IPACK.EQ.-1 .OR. ( ISYMPK.EQ.1 .AND. ISYM.EQ.1 ) .OR.
     $         ( ISYMPK.EQ.2 .AND. ISYM.EQ.1 .AND. KL.GT.0 ) .OR.
     $         ( ISYMPK.EQ.3 .AND. ISYM.EQ.1 .AND. KU.GT.0 ) .OR.
     $         ( ISYMPK.NE.0 .AND. M.NE.N ) ) THEN
         INFO = -12
      ELSE IF( LDA.LT.MAX( 1, MINLDA ) ) THEN
         INFO = -14
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLATMT', -INFO )
         RETURN
      END IF
*
*     Initialize random number generator
*
      DO 100 I = 1, 4
         ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
  100 CONTINUE
*
      IF( MOD( ISEED( 4 ), 2 ).NE.1 )
     $   ISEED( 4 ) = ISEED( 4 ) + 1
*
*     2)      Set up D  if indicated.
*
*             Compute D according to COND and MODE
*
      CALL SLATM7( MODE, COND, IRSIGN, IDIST, ISEED, D, MNMIN, RANK,
     $             IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = 1
         RETURN
      END IF
*
*     Choose Top-Down if D is (apparently) increasing,
*     Bottom-Up if D is (apparently) decreasing.
*
      IF( ABS( D( 1 ) ).LE.ABS( D( RANK ) ) ) THEN
         TOPDWN = .TRUE.
      ELSE
         TOPDWN = .FALSE.
      END IF
*
      IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN
*
*        Scale by DMAX
*
         TEMP = ABS( D( 1 ) )
         DO 110 I = 2, RANK
            TEMP = MAX( TEMP, ABS( D( I ) ) )
  110    CONTINUE
*
         IF( TEMP.GT.ZERO ) THEN
            ALPHA = DMAX / TEMP
         ELSE
            INFO = 2
            RETURN
         END IF
*
         CALL SSCAL( RANK, ALPHA, D, 1 )
*
      END IF
*
      CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
*
*     3)      Generate Banded Matrix using Givens rotations.
*             Also the special case of UUB=LLB=0
*
*               Compute Addressing constants to cover all
*               storage formats.  Whether GE, HE, SY, GB, HB, or SB,
*               upper or lower triangle or both,
*               the (i,j)-th element is in
*               A( i - ISKEW*j + IOFFST, j )
*
      IF( IPACK.GT.4 ) THEN
         ILDA = LDA - 1
         ISKEW = 1
         IF( IPACK.GT.5 ) THEN
            IOFFST = UUB + 1
         ELSE
            IOFFST = 1
         END IF
      ELSE
         ILDA = LDA
         ISKEW = 0
         IOFFST = 0
      END IF
*
*     IPACKG is the format that the matrix is generated in. If this is
*     different from IPACK, then the matrix must be repacked at the
*     end.  It also signals how to compute the norm, for scaling.
*
      IPACKG = 0
*
*     Diagonal Matrix -- We are done, unless it
*     is to be stored HP/SP/PP/TP (PACK='R' or 'C')
*
      IF( LLB.EQ.0 .AND. UUB.EQ.0 ) THEN
         DO 120 J = 1, MNMIN
            A( ( 1-ISKEW )*J+IOFFST, J ) = CMPLX( D( J ) )
  120    CONTINUE
*
         IF( IPACK.LE.2 .OR. IPACK.GE.5 )
     $      IPACKG = IPACK
*
      ELSE IF( GIVENS ) THEN
*
*        Check whether to use Givens rotations,
*        Householder transformations, or nothing.
*
         IF( ISYM.EQ.1 ) THEN
*
*           Non-symmetric -- A = U D V
*
            IF( IPACK.GT.4 ) THEN
               IPACKG = IPACK
            ELSE
               IPACKG = 0
            END IF
*
            DO 130 J = 1, MNMIN
               A( ( 1-ISKEW )*J+IOFFST, J ) = CMPLX( D( J ) )
  130       CONTINUE
*
            IF( TOPDWN ) THEN
               JKL = 0
               DO 160 JKU = 1, UUB
*
*                 Transform from bandwidth JKL, JKU-1 to JKL, JKU
*
*                 Last row actually rotated is M
*                 Last column actually rotated is MIN( M+JKU, N )
*
                  DO 150 JR = 1, MIN( M+JKU, N ) + JKL - 1
                     EXTRA = CZERO
                     ANGLE = TWOPI*SLARND( 1, ISEED )
                     C = COS( ANGLE )*CLARND( 5, ISEED )
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
                     ICOL = MAX( 1, JR-JKL )
                     IF( JR.LT.M ) THEN
                        IL = MIN( N, JR+JKU ) + 1 - ICOL
                        CALL CLAROT( .TRUE., JR.GT.JKL, .FALSE., IL,
     $                               C,
     $                               S, A( JR-ISKEW*ICOL+IOFFST, ICOL ),
     $                               ILDA, EXTRA, DUMMY )
                     END IF
*
*                    Chase "EXTRA" back up
*
                     IR = JR
                     IC = ICOL
                     DO 140 JCH = JR - JKL, 1, -JKL - JKU
                        IF( IR.LT.M ) THEN
                           CALL CLARTG( A( IR+1-ISKEW*( IC+1 )+IOFFST,
     $                                  IC+1 ), EXTRA, REALC, S, DUMMY )
                           DUMMY = CLARND( 5, ISEED )
                           C = CONJG( REALC*DUMMY )
                           S = CONJG( -S*DUMMY )
                        END IF
                        IROW = MAX( 1, JCH-JKU )
                        IL = IR + 2 - IROW
                        CTEMP = CZERO
                        ILTEMP = JCH.GT.JKU
                        CALL CLAROT( .FALSE., ILTEMP, .TRUE., IL, C,
     $                               S,
     $                               A( IROW-ISKEW*IC+IOFFST, IC ),
     $                               ILDA, CTEMP, EXTRA )
                        IF( ILTEMP ) THEN
                           CALL CLARTG( A( IROW+1-ISKEW*( IC+1 )+IOFFST,
     $                                  IC+1 ), CTEMP, REALC, S, DUMMY )
                           DUMMY = CLARND( 5, ISEED )
                           C = CONJG( REALC*DUMMY )
                           S = CONJG( -S*DUMMY )
*
                           ICOL = MAX( 1, JCH-JKU-JKL )
                           IL = IC + 2 - ICOL
                           EXTRA = CZERO
                           CALL CLAROT( .TRUE., JCH.GT.JKU+JKL,
     $                                  .TRUE.,
     $                                  IL, C, S, A( IROW-ISKEW*ICOL+
     $                                  IOFFST, ICOL ), ILDA, EXTRA,
     $                                  CTEMP )
                           IC = ICOL
                           IR = IROW
                        END IF
  140                CONTINUE
  150             CONTINUE
  160          CONTINUE
*
               JKU = UUB
               DO 190 JKL = 1, LLB
*
*                 Transform from bandwidth JKL-1, JKU to JKL, JKU
*
                  DO 180 JC = 1, MIN( N+JKL, M ) + JKU - 1
                     EXTRA = CZERO
                     ANGLE = TWOPI*SLARND( 1, ISEED )
                     C = COS( ANGLE )*CLARND( 5, ISEED )
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
                     IROW = MAX( 1, JC-JKU )
                     IF( JC.LT.N ) THEN
                        IL = MIN( M, JC+JKL ) + 1 - IROW
                        CALL CLAROT( .FALSE., JC.GT.JKU, .FALSE., IL,
     $                               C,
     $                               S, A( IROW-ISKEW*JC+IOFFST, JC ),
     $                               ILDA, EXTRA, DUMMY )
                     END IF
*
*                    Chase "EXTRA" back up
*
                     IC = JC
                     IR = IROW
                     DO 170 JCH = JC - JKU, 1, -JKL - JKU
                        IF( IC.LT.N ) THEN
                           CALL CLARTG( A( IR+1-ISKEW*( IC+1 )+IOFFST,
     $                                  IC+1 ), EXTRA, REALC, S, DUMMY )
                           DUMMY = CLARND( 5, ISEED )
                           C = CONJG( REALC*DUMMY )
                           S = CONJG( -S*DUMMY )
                        END IF
                        ICOL = MAX( 1, JCH-JKL )
                        IL = IC + 2 - ICOL
                        CTEMP = CZERO
                        ILTEMP = JCH.GT.JKL
                        CALL CLAROT( .TRUE., ILTEMP, .TRUE., IL, C,
     $                               S,
     $                               A( IR-ISKEW*ICOL+IOFFST, ICOL ),
     $                               ILDA, CTEMP, EXTRA )
                        IF( ILTEMP ) THEN
                           CALL CLARTG( A( IR+1-ISKEW*( ICOL+1 )+IOFFST,
     $                                  ICOL+1 ), CTEMP, REALC, S,
     $                                  DUMMY )
                           DUMMY = CLARND( 5, ISEED )
                           C = CONJG( REALC*DUMMY )
                           S = CONJG( -S*DUMMY )
                           IROW = MAX( 1, JCH-JKL-JKU )
                           IL = IR + 2 - IROW
                           EXTRA = CZERO
                           CALL CLAROT( .FALSE., JCH.GT.JKL+JKU,
     $                                  .TRUE.,
     $                                  IL, C, S, A( IROW-ISKEW*ICOL+
     $                                  IOFFST, ICOL ), ILDA, EXTRA,
     $                                  CTEMP )
                           IC = ICOL
                           IR = IROW
                        END IF
  170                CONTINUE
  180             CONTINUE
  190          CONTINUE
*
            ELSE
*
*              Bottom-Up -- Start at the bottom right.
*
               JKL = 0
               DO 220 JKU = 1, UUB
*
*                 Transform from bandwidth JKL, JKU-1 to JKL, JKU
*
*                 First row actually rotated is M
*                 First column actually rotated is MIN( M+JKU, N )
*
                  IENDCH = MIN( M, N+JKL ) - 1
                  DO 210 JC = MIN( M+JKU, N ) - 1, 1 - JKL, -1
                     EXTRA = CZERO
                     ANGLE = TWOPI*SLARND( 1, ISEED )
                     C = COS( ANGLE )*CLARND( 5, ISEED )
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
                     IROW = MAX( 1, JC-JKU+1 )
                     IF( JC.GT.0 ) THEN
                        IL = MIN( M, JC+JKL+1 ) + 1 - IROW
                        CALL CLAROT( .FALSE., .FALSE., JC+JKL.LT.M,
     $                               IL,
     $                               C, S, A( IROW-ISKEW*JC+IOFFST,
     $                               JC ), ILDA, DUMMY, EXTRA )
                     END IF
*
*                    Chase "EXTRA" back down
*
                     IC = JC
                     DO 200 JCH = JC + JKL, IENDCH, JKL + JKU
                        ILEXTR = IC.GT.0
                        IF( ILEXTR ) THEN
                           CALL CLARTG( A( JCH-ISKEW*IC+IOFFST, IC ),
     $                                  EXTRA, REALC, S, DUMMY )
                           DUMMY = CLARND( 5, ISEED )
                           C = REALC*DUMMY
                           S = S*DUMMY
                        END IF
                        IC = MAX( 1, IC )
                        ICOL = MIN( N-1, JCH+JKU )
                        ILTEMP = JCH + JKU.LT.N
                        CTEMP = CZERO
                        CALL CLAROT( .TRUE., ILEXTR, ILTEMP,
     $                               ICOL+2-IC,
     $                               C, S, A( JCH-ISKEW*IC+IOFFST, IC ),
     $                               ILDA, EXTRA, CTEMP )
                        IF( ILTEMP ) THEN
                           CALL CLARTG( A( JCH-ISKEW*ICOL+IOFFST,
     $                                  ICOL ), CTEMP, REALC, S, DUMMY )
                           DUMMY = CLARND( 5, ISEED )
                           C = REALC*DUMMY
                           S = S*DUMMY
                           IL = MIN( IENDCH, JCH+JKL+JKU ) + 2 - JCH
                           EXTRA = CZERO
                           CALL CLAROT( .FALSE., .TRUE.,
     $                                  JCH+JKL+JKU.LE.IENDCH, IL, C, S,
     $                                  A( JCH-ISKEW*ICOL+IOFFST,
     $                                  ICOL ), ILDA, CTEMP, EXTRA )
                           IC = ICOL
                        END IF
  200                CONTINUE
  210             CONTINUE
  220          CONTINUE
*
               JKU = UUB
               DO 250 JKL = 1, LLB
*
*                 Transform from bandwidth JKL-1, JKU to JKL, JKU
*
*                 First row actually rotated is MIN( N+JKL, M )
*                 First column actually rotated is N
*
                  IENDCH = MIN( N, M+JKU ) - 1
                  DO 240 JR = MIN( N+JKL, M ) - 1, 1 - JKU, -1
                     EXTRA = CZERO
                     ANGLE = TWOPI*SLARND( 1, ISEED )
                     C = COS( ANGLE )*CLARND( 5, ISEED )
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
                     ICOL = MAX( 1, JR-JKL+1 )
                     IF( JR.GT.0 ) THEN
                        IL = MIN( N, JR+JKU+1 ) + 1 - ICOL
                        CALL CLAROT( .TRUE., .FALSE., JR+JKU.LT.N,
     $                               IL,
     $                               C, S, A( JR-ISKEW*ICOL+IOFFST,
     $                               ICOL ), ILDA, DUMMY, EXTRA )
                     END IF
*
*                    Chase "EXTRA" back down
*
                     IR = JR
                     DO 230 JCH = JR + JKU, IENDCH, JKL + JKU
                        ILEXTR = IR.GT.0
                        IF( ILEXTR ) THEN
                           CALL CLARTG( A( IR-ISKEW*JCH+IOFFST, JCH ),
     $                                  EXTRA, REALC, S, DUMMY )
                           DUMMY = CLARND( 5, ISEED )
                           C = REALC*DUMMY
                           S = S*DUMMY
                        END IF
                        IR = MAX( 1, IR )
                        IROW = MIN( M-1, JCH+JKL )
                        ILTEMP = JCH + JKL.LT.M
                        CTEMP = CZERO
                        CALL CLAROT( .FALSE., ILEXTR, ILTEMP,
     $                               IROW+2-IR,
     $                               C, S, A( IR-ISKEW*JCH+IOFFST,
     $                               JCH ), ILDA, EXTRA, CTEMP )
                        IF( ILTEMP ) THEN
                           CALL CLARTG( A( IROW-ISKEW*JCH+IOFFST, JCH ),
     $                                  CTEMP, REALC, S, DUMMY )
                           DUMMY = CLARND( 5, ISEED )
                           C = REALC*DUMMY
                           S = S*DUMMY
                           IL = MIN( IENDCH, JCH+JKL+JKU ) + 2 - JCH
                           EXTRA = CZERO
                           CALL CLAROT( .TRUE., .TRUE.,
     $                                  JCH+JKL+JKU.LE.IENDCH, IL, C, S,
     $                                  A( IROW-ISKEW*JCH+IOFFST, JCH ),
     $                                  ILDA, CTEMP, EXTRA )
                           IR = IROW
                        END IF
  230                CONTINUE
  240             CONTINUE
  250          CONTINUE
*
            END IF
*
         ELSE
*
*           Symmetric -- A = U D U'
*           Hermitian -- A = U D U*
*
            IPACKG = IPACK
            IOFFG = IOFFST
*
            IF( TOPDWN ) THEN
*
*              Top-Down -- Generate Upper triangle only
*
               IF( IPACK.GE.5 ) THEN
                  IPACKG = 6
                  IOFFG = UUB + 1
               ELSE
                  IPACKG = 1
               END IF
*
               DO 260 J = 1, MNMIN
                  A( ( 1-ISKEW )*J+IOFFG, J ) = CMPLX( D( J ) )
  260          CONTINUE
*
               DO 290 K = 1, UUB
                  DO 280 JC = 1, N - 1
                     IROW = MAX( 1, JC-K )
                     IL = MIN( JC+1, K+2 )
                     EXTRA = CZERO
                     CTEMP = A( JC-ISKEW*( JC+1 )+IOFFG, JC+1 )
                     ANGLE = TWOPI*SLARND( 1, ISEED )
                     C = COS( ANGLE )*CLARND( 5, ISEED )
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
                     IF( CSYM ) THEN
                        CT = C
                        ST = S
                     ELSE
                        CTEMP = CONJG( CTEMP )
                        CT = CONJG( C )
                        ST = CONJG( S )
                     END IF
                     CALL CLAROT( .FALSE., JC.GT.K, .TRUE., IL, C, S,
     $                            A( IROW-ISKEW*JC+IOFFG, JC ), ILDA,
     $                            EXTRA, CTEMP )
                     CALL CLAROT( .TRUE., .TRUE., .FALSE.,
     $                            MIN( K, N-JC )+1, CT, ST,
     $                            A( ( 1-ISKEW )*JC+IOFFG, JC ), ILDA,
     $                            CTEMP, DUMMY )
*
*                    Chase EXTRA back up the matrix
*
                     ICOL = JC
                     DO 270 JCH = JC - K, 1, -K
                        CALL CLARTG( A( JCH+1-ISKEW*( ICOL+1 )+IOFFG,
     $                               ICOL+1 ), EXTRA, REALC, S, DUMMY )
                        DUMMY = CLARND( 5, ISEED )
                        C = CONJG( REALC*DUMMY )
                        S = CONJG( -S*DUMMY )
                        CTEMP = A( JCH-ISKEW*( JCH+1 )+IOFFG, JCH+1 )
                        IF( CSYM ) THEN
                           CT = C
                           ST = S
                        ELSE
                           CTEMP = CONJG( CTEMP )
                           CT = CONJG( C )
                           ST = CONJG( S )
                        END IF
                        CALL CLAROT( .TRUE., .TRUE., .TRUE., K+2, C,
     $                               S,
     $                               A( ( 1-ISKEW )*JCH+IOFFG, JCH ),
     $                               ILDA, CTEMP, EXTRA )
                        IROW = MAX( 1, JCH-K )
                        IL = MIN( JCH+1, K+2 )
                        EXTRA = CZERO
                        CALL CLAROT( .FALSE., JCH.GT.K, .TRUE., IL,
     $                               CT,
     $                               ST, A( IROW-ISKEW*JCH+IOFFG, JCH ),
     $                               ILDA, EXTRA, CTEMP )
                        ICOL = JCH
  270                CONTINUE
  280             CONTINUE
  290          CONTINUE
*
*              If we need lower triangle, copy from upper. Note that
*              the order of copying is chosen to work for 'q' -> 'b'
*
               IF( IPACK.NE.IPACKG .AND. IPACK.NE.3 ) THEN
                  DO 320 JC = 1, N
                     IROW = IOFFST - ISKEW*JC
                     IF( CSYM ) THEN
                        DO 300 JR = JC, MIN( N, JC+UUB )
                           A( JR+IROW, JC ) = A( JC-ISKEW*JR+IOFFG, JR )
  300                   CONTINUE
                     ELSE
                        DO 310 JR = JC, MIN( N, JC+UUB )
                           A( JR+IROW, JC ) = CONJG( A( JC-ISKEW*JR+
     $                                        IOFFG, JR ) )
  310                   CONTINUE
                     END IF
  320             CONTINUE
                  IF( IPACK.EQ.5 ) THEN
                     DO 340 JC = N - UUB + 1, N
                        DO 330 JR = N + 2 - JC, UUB + 1
                           A( JR, JC ) = CZERO
  330                   CONTINUE
  340                CONTINUE
                  END IF
                  IF( IPACKG.EQ.6 ) THEN
                     IPACKG = IPACK
                  ELSE
                     IPACKG = 0
                  END IF
               END IF
            ELSE
*
*              Bottom-Up -- Generate Lower triangle only
*
               IF( IPACK.GE.5 ) THEN
                  IPACKG = 5
                  IF( IPACK.EQ.6 )
     $               IOFFG = 1
               ELSE
                  IPACKG = 2
               END IF
*
               DO 350 J = 1, MNMIN
                  A( ( 1-ISKEW )*J+IOFFG, J ) = CMPLX( D( J ) )
  350          CONTINUE
*
               DO 380 K = 1, UUB
                  DO 370 JC = N - 1, 1, -1
                     IL = MIN( N+1-JC, K+2 )
                     EXTRA = CZERO
                     CTEMP = A( 1+( 1-ISKEW )*JC+IOFFG, JC )
                     ANGLE = TWOPI*SLARND( 1, ISEED )
                     C = COS( ANGLE )*CLARND( 5, ISEED )
                     S = SIN( ANGLE )*CLARND( 5, ISEED )
                     IF( CSYM ) THEN
                        CT = C
                        ST = S
                     ELSE
                        CTEMP = CONJG( CTEMP )
                        CT = CONJG( C )
                        ST = CONJG( S )
                     END IF
                     CALL CLAROT( .FALSE., .TRUE., N-JC.GT.K, IL, C,
     $                            S,
     $                            A( ( 1-ISKEW )*JC+IOFFG, JC ), ILDA,
     $                            CTEMP, EXTRA )
                     ICOL = MAX( 1, JC-K+1 )
                     CALL CLAROT( .TRUE., .FALSE., .TRUE., JC+2-ICOL,
     $                            CT, ST, A( JC-ISKEW*ICOL+IOFFG,
     $                            ICOL ), ILDA, DUMMY, CTEMP )
*
*                    Chase EXTRA back down the matrix
*
                     ICOL = JC
                     DO 360 JCH = JC + K, N - 1, K
                        CALL CLARTG( A( JCH-ISKEW*ICOL+IOFFG, ICOL ),
     $                               EXTRA, REALC, S, DUMMY )
                        DUMMY = CLARND( 5, ISEED )
                        C = REALC*DUMMY
                        S = S*DUMMY
                        CTEMP = A( 1+( 1-ISKEW )*JCH+IOFFG, JCH )
                        IF( CSYM ) THEN
                           CT = C
                           ST = S
                        ELSE
                           CTEMP = CONJG( CTEMP )
                           CT = CONJG( C )
                           ST = CONJG( S )
                        END IF
                        CALL CLAROT( .TRUE., .TRUE., .TRUE., K+2, C,
     $                               S,
     $                               A( JCH-ISKEW*ICOL+IOFFG, ICOL ),
     $                               ILDA, EXTRA, CTEMP )
                        IL = MIN( N+1-JCH, K+2 )
                        EXTRA = CZERO
                        CALL CLAROT( .FALSE., .TRUE., N-JCH.GT.K, IL,
     $                               CT, ST, A( ( 1-ISKEW )*JCH+IOFFG,
     $                               JCH ), ILDA, CTEMP, EXTRA )
                        ICOL = JCH
  360                CONTINUE
  370             CONTINUE
  380          CONTINUE
*
*              If we need upper triangle, copy from lower. Note that
*              the order of copying is chosen to work for 'b' -> 'q'
*
               IF( IPACK.NE.IPACKG .AND. IPACK.NE.4 ) THEN
                  DO 410 JC = N, 1, -1
                     IROW = IOFFST - ISKEW*JC
                     IF( CSYM ) THEN
                        DO 390 JR = JC, MAX( 1, JC-UUB ), -1
                           A( JR+IROW, JC ) = A( JC-ISKEW*JR+IOFFG, JR )
  390                   CONTINUE
                     ELSE
                        DO 400 JR = JC, MAX( 1, JC-UUB ), -1
                           A( JR+IROW, JC ) = CONJG( A( JC-ISKEW*JR+
     $                                        IOFFG, JR ) )
  400                   CONTINUE
                     END IF
  410             CONTINUE
                  IF( IPACK.EQ.6 ) THEN
                     DO 430 JC = 1, UUB
                        DO 420 JR = 1, UUB + 1 - JC
                           A( JR, JC ) = CZERO
  420                   CONTINUE
  430                CONTINUE
                  END IF
                  IF( IPACKG.EQ.5 ) THEN
                     IPACKG = IPACK
                  ELSE
                     IPACKG = 0
                  END IF
               END IF
            END IF
*
*           Ensure that the diagonal is real if Hermitian
*
            IF( .NOT.CSYM ) THEN
               DO 440 JC = 1, N
                  IROW = IOFFST + ( 1-ISKEW )*JC
                  A( IROW, JC ) = CMPLX( REAL( A( IROW, JC ) ) )
  440          CONTINUE
            END IF
*
         END IF
*
      ELSE
*
*        4)      Generate Banded Matrix by first
*                Rotating by random Unitary matrices,
*                then reducing the bandwidth using Householder
*                transformations.
*
*                Note: we should get here only if LDA .ge. N
*
         IF( ISYM.EQ.1 ) THEN
*
*           Non-symmetric -- A = U D V
*
            CALL CLAGGE( MR, NC, LLB, UUB, D, A, LDA, ISEED, WORK,
     $                   IINFO )
         ELSE
*
*           Symmetric -- A = U D U' or
*           Hermitian -- A = U D U*
*
            IF( CSYM ) THEN
               CALL CLAGSY( M, LLB, D, A, LDA, ISEED, WORK, IINFO )
            ELSE
               CALL CLAGHE( M, LLB, D, A, LDA, ISEED, WORK, IINFO )
            END IF
         END IF
*
         IF( IINFO.NE.0 ) THEN
            INFO = 3
            RETURN
         END IF
      END IF
*
*     5)      Pack the matrix
*
      IF( IPACK.NE.IPACKG ) THEN
         IF( IPACK.EQ.1 ) THEN
*
*           'U' -- Upper triangular, not packed
*
            DO 460 J = 1, M
               DO 450 I = J + 1, M
                  A( I, J ) = CZERO
  450          CONTINUE
  460       CONTINUE
*
         ELSE IF( IPACK.EQ.2 ) THEN
*
*           'L' -- Lower triangular, not packed
*
            DO 480 J = 2, M
               DO 470 I = 1, J - 1
                  A( I, J ) = CZERO
  470          CONTINUE
  480       CONTINUE
*
         ELSE IF( IPACK.EQ.3 ) THEN
*
*           'C' -- Upper triangle packed Columnwise.
*
            ICOL = 1
            IROW = 0
            DO 500 J = 1, M
               DO 490 I = 1, J
                  IROW = IROW + 1
                  IF( IROW.GT.LDA ) THEN
                     IROW = 1
                     ICOL = ICOL + 1
                  END IF
                  A( IROW, ICOL ) = A( I, J )
  490          CONTINUE
  500       CONTINUE
*
         ELSE IF( IPACK.EQ.4 ) THEN
*
*           'R' -- Lower triangle packed Columnwise.
*
            ICOL = 1
            IROW = 0
            DO 520 J = 1, M
               DO 510 I = J, M
                  IROW = IROW + 1
                  IF( IROW.GT.LDA ) THEN
                     IROW = 1
                     ICOL = ICOL + 1
                  END IF
                  A( IROW, ICOL ) = A( I, J )
  510          CONTINUE
  520       CONTINUE
*
         ELSE IF( IPACK.GE.5 ) THEN
*
*           'B' -- The lower triangle is packed as a band matrix.
*           'Q' -- The upper triangle is packed as a band matrix.
*           'Z' -- The whole matrix is packed as a band matrix.
*
            IF( IPACK.EQ.5 )
     $         UUB = 0
            IF( IPACK.EQ.6 )
     $         LLB = 0
*
            DO 540 J = 1, UUB
               DO 530 I = MIN( J+LLB, M ), 1, -1
                  A( I-J+UUB+1, J ) = A( I, J )
  530          CONTINUE
  540       CONTINUE
*
            DO 560 J = UUB + 2, N
               DO 550 I = J - UUB, MIN( J+LLB, M )
                  A( I-J+UUB+1, J ) = A( I, J )
  550          CONTINUE
  560       CONTINUE
         END IF
*
*        If packed, zero out extraneous elements.
*
*        Symmetric/Triangular Packed --
*        zero out everything after A(IROW,ICOL)
*
         IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
            DO 580 JC = ICOL, M
               DO 570 JR = IROW + 1, LDA
                  A( JR, JC ) = CZERO
  570          CONTINUE
               IROW = 0
  580       CONTINUE
*
         ELSE IF( IPACK.GE.5 ) THEN
*
*           Packed Band --
*              1st row is now in A( UUB+2-j, j), zero above it
*              m-th row is now in A( M+UUB-j,j), zero below it
*              last non-zero diagonal is now in A( UUB+LLB+1,j ),
*                 zero below it, too.
*
            IR1 = UUB + LLB + 2
            IR2 = UUB + M + 2
            DO 610 JC = 1, N
               DO 590 JR = 1, UUB + 1 - JC
                  A( JR, JC ) = CZERO
  590          CONTINUE
               DO 600 JR = MAX( 1, MIN( IR1, IR2-JC ) ), LDA
                  A( JR, JC ) = CZERO
  600          CONTINUE
  610       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CLATMT
*
      END