numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/MATGEN/dlaran.f 4042B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
*> \brief \b DLARAN
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       DOUBLE PRECISION FUNCTION DLARAN( ISEED )
*
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLARAN returns a random real number from a uniform (0,1)
*> distribution.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry, the seed of the random number generator; the array
*>          elements must be between 0 and 4095, and ISEED(4) must be
*>          odd.
*>          On exit, the seed is updated.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup list_temp
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  This routine uses a multiplicative congruential method with modulus
*>  2**48 and multiplier 33952834046453 (see G.S.Fishman,
*>  'Multiplicative congruential random number generators with modulus
*>  2**b: an exhaustive analysis for b = 32 and a partial analysis for
*>  b = 48', Math. Comp. 189, pp 331-344, 1990).
*>
*>  48-bit integers are stored in 4 integer array elements with 12 bits
*>  per element. Hence the routine is portable across machines with
*>  integers of 32 bits or more.
*> \endverbatim
*>
*  =====================================================================
      DOUBLE PRECISION FUNCTION DLARAN( ISEED )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            M1, M2, M3, M4
      PARAMETER          ( M1 = 494, M2 = 322, M3 = 2508, M4 = 2549 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
      INTEGER            IPW2
      DOUBLE PRECISION   R
      PARAMETER          ( IPW2 = 4096, R = ONE / IPW2 )
*     ..
*     .. Local Scalars ..
      INTEGER            IT1, IT2, IT3, IT4
      DOUBLE PRECISION   RNDOUT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MOD
*     ..
*     .. Executable Statements ..
  10  CONTINUE
*
*     multiply the seed by the multiplier modulo 2**48
*
      IT4 = ISEED( 4 )*M4
      IT3 = IT4 / IPW2
      IT4 = IT4 - IPW2*IT3
      IT3 = IT3 + ISEED( 3 )*M4 + ISEED( 4 )*M3
      IT2 = IT3 / IPW2
      IT3 = IT3 - IPW2*IT2
      IT2 = IT2 + ISEED( 2 )*M4 + ISEED( 3 )*M3 + ISEED( 4 )*M2
      IT1 = IT2 / IPW2
      IT2 = IT2 - IPW2*IT1
      IT1 = IT1 + ISEED( 1 )*M4 + ISEED( 2 )*M3 + ISEED( 3 )*M2 +
     $      ISEED( 4 )*M1
      IT1 = MOD( IT1, IPW2 )
*
*     return updated seed
*
      ISEED( 1 ) = IT1
      ISEED( 2 ) = IT2
      ISEED( 3 ) = IT3
      ISEED( 4 ) = IT4
*
*     convert 48-bit integer to a real number in the interval (0,1)
*
      RNDOUT = R*( DBLE( IT1 )+R*( DBLE( IT2 )+R*( DBLE( IT3 )+R*
     $         ( DBLE( IT4 ) ) ) ) )
*
      IF (RNDOUT.EQ.1.0D+0) THEN
*        If a real number has n bits of precision, and the first
*        n bits of the 48-bit integer above happen to be all 1 (which
*        will occur about once every 2**n calls), then DLARAN will
*        be rounded to exactly 1.0.
*        Since DLARAN is not supposed to return exactly 0.0 or 1.0
*        (and some callers of DLARAN, such as CLARND, depend on that),
*        the statistically correct thing to do in this situation is
*        simply to iterate again.
*        N.B. the case DLARAN = 0.0 should not be possible.
*
         GOTO 10
      END IF
*
      DLARAN = RNDOUT
      RETURN
*
*     End of DLARAN
*
      END