numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/MATGEN/dlarge.f | 4489B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
*> \brief \b DLARGE * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DLARGE( N, A, LDA, ISEED, WORK, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, N * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * DOUBLE PRECISION A( LDA, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLARGE pre- and post-multiplies a real general n by n matrix A *> with a random orthogonal matrix: A = U*D*U'. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> On entry, the original n by n matrix A. *> On exit, A is overwritten by U*A*U' for some random *> orthogonal matrix U. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= N. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry, the seed of the random number generator; the array *> elements must be between 0 and 4095, and ISEED(4) must be *> odd. *> On exit, the seed is updated. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (2*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_matgen * * ===================================================================== SUBROUTINE DLARGE( N, A, LDA, ISEED, WORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION A( LDA, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I DOUBLE PRECISION TAU, WA, WB, WN * .. * .. External Subroutines .. EXTERNAL DGEMV, DGER, DLARNV, DSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, SIGN * .. * .. External Functions .. DOUBLE PRECISION DNRM2 EXTERNAL DNRM2 * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( N.LT.0 ) THEN INFO = -1 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -3 END IF IF( INFO.LT.0 ) THEN CALL XERBLA( 'DLARGE', -INFO ) RETURN END IF * * pre- and post-multiply A by random orthogonal matrix * DO 10 I = N, 1, -1 * * generate random reflection * CALL DLARNV( 3, ISEED, N-I+1, WORK ) WN = DNRM2( N-I+1, WORK, 1 ) WA = SIGN( WN, WORK( 1 ) ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = WORK( 1 ) + WA CALL DSCAL( N-I, ONE / WB, WORK( 2 ), 1 ) WORK( 1 ) = ONE TAU = WB / WA END IF * * multiply A(i:n,1:n) by random reflection from the left * CALL DGEMV( 'Transpose', N-I+1, N, ONE, A( I, 1 ), LDA, WORK, $ 1, ZERO, WORK( N+1 ), 1 ) CALL DGER( N-I+1, N, -TAU, WORK, 1, WORK( N+1 ), 1, A( I, 1 ), $ LDA ) * * multiply A(1:n,i:n) by random reflection from the right * CALL DGEMV( 'No transpose', N, N-I+1, ONE, A( 1, I ), LDA, $ WORK, 1, ZERO, WORK( N+1 ), 1 ) CALL DGER( N, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1, A( 1, I ), $ LDA ) 10 CONTINUE RETURN * * End of DLARGE * END