numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/MATGEN/dlaror.f | 9022B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
*> \brief \b DLAROR * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) * * .. Scalar Arguments .. * CHARACTER INIT, SIDE * INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * DOUBLE PRECISION A( LDA, * ), X( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLAROR pre- or post-multiplies an M by N matrix A by a random *> orthogonal matrix U, overwriting A. A may optionally be initialized *> to the identity matrix before multiplying by U. U is generated using *> the method of G.W. Stewart (SIAM J. Numer. Anal. 17, 1980, 403-409). *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE *> \verbatim *> SIDE is CHARACTER*1 *> Specifies whether A is multiplied on the left or right by U. *> = 'L': Multiply A on the left (premultiply) by U *> = 'R': Multiply A on the right (postmultiply) by U' *> = 'C' or 'T': Multiply A on the left by U and the right *> by U' (Here, U' means U-transpose.) *> \endverbatim *> *> \param[in] INIT *> \verbatim *> INIT is CHARACTER*1 *> Specifies whether or not A should be initialized to the *> identity matrix. *> = 'I': Initialize A to (a section of) the identity matrix *> before applying U. *> = 'N': No initialization. Apply U to the input matrix A. *> *> INIT = 'I' may be used to generate square or rectangular *> orthogonal matrices: *> *> For M = N and SIDE = 'L' or 'R', the rows will be orthogonal *> to each other, as will the columns. *> *> If M < N, SIDE = 'R' produces a dense matrix whose rows are *> orthogonal and whose columns are not, while SIDE = 'L' *> produces a matrix whose rows are orthogonal, and whose first *> M columns are orthogonal, and whose remaining columns are *> zero. *> *> If M > N, SIDE = 'L' produces a dense matrix whose columns *> are orthogonal and whose rows are not, while SIDE = 'R' *> produces a matrix whose columns are orthogonal, and whose *> first M rows are orthogonal, and whose remaining rows are *> zero. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of A. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of A. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA, N) *> On entry, the array A. *> On exit, overwritten by U A ( if SIDE = 'L' ), *> or by A U ( if SIDE = 'R' ), *> or by U A U' ( if SIDE = 'C' or 'T'). *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to DLAROR to continue the same random number *> sequence. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is DOUBLE PRECISION array, dimension (3*MAX( M, N )) *> Workspace of length *> 2*M + N if SIDE = 'L', *> 2*N + M if SIDE = 'R', *> 3*N if SIDE = 'C' or 'T'. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> An error flag. It is set to: *> = 0: normal return *> < 0: if INFO = -k, the k-th argument had an illegal value *> = 1: if the random numbers generated by DLARND are bad. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_matgen * * ===================================================================== SUBROUTINE DLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER INIT, SIDE INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION A( LDA, * ), X( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TOOSML PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, $ TOOSML = 1.0D-20 ) * .. * .. Local Scalars .. INTEGER IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM DOUBLE PRECISION FACTOR, XNORM, XNORMS * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLARND, DNRM2 EXTERNAL LSAME, DLARND, DNRM2 * .. * .. External Subroutines .. EXTERNAL DGEMV, DGER, DLASET, DSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, SIGN * .. * .. Executable Statements .. * INFO = 0 IF( N.EQ.0 .OR. M.EQ.0 ) $ RETURN * ITYPE = 0 IF( LSAME( SIDE, 'L' ) ) THEN ITYPE = 1 ELSE IF( LSAME( SIDE, 'R' ) ) THEN ITYPE = 2 ELSE IF( LSAME( SIDE, 'C' ) .OR. LSAME( SIDE, 'T' ) ) THEN ITYPE = 3 END IF * * Check for argument errors. * IF( ITYPE.EQ.0 ) THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN INFO = -4 ELSE IF( LDA.LT.M ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAROR', -INFO ) RETURN END IF * IF( ITYPE.EQ.1 ) THEN NXFRM = M ELSE NXFRM = N END IF * * Initialize A to the identity matrix if desired * IF( LSAME( INIT, 'I' ) ) $ CALL DLASET( 'Full', M, N, ZERO, ONE, A, LDA ) * * If no rotation possible, multiply by random +/-1 * * Compute rotation by computing Householder transformations * H(2), H(3), ..., H(nhouse) * DO 10 J = 1, NXFRM X( J ) = ZERO 10 CONTINUE * DO 30 IXFRM = 2, NXFRM KBEG = NXFRM - IXFRM + 1 * * Generate independent normal( 0, 1 ) random numbers * DO 20 J = KBEG, NXFRM X( J ) = DLARND( 3, ISEED ) 20 CONTINUE * * Generate a Householder transformation from the random vector X * XNORM = DNRM2( IXFRM, X( KBEG ), 1 ) XNORMS = SIGN( XNORM, X( KBEG ) ) X( KBEG+NXFRM ) = SIGN( ONE, -X( KBEG ) ) FACTOR = XNORMS*( XNORMS+X( KBEG ) ) IF( ABS( FACTOR ).LT.TOOSML ) THEN INFO = 1 CALL XERBLA( 'DLAROR', INFO ) RETURN ELSE FACTOR = ONE / FACTOR END IF X( KBEG ) = X( KBEG ) + XNORMS * * Apply Householder transformation to A * IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 ) THEN * * Apply H(k) from the left. * CALL DGEMV( 'T', IXFRM, N, ONE, A( KBEG, 1 ), LDA, $ X( KBEG ), 1, ZERO, X( 2*NXFRM+1 ), 1 ) CALL DGER( IXFRM, N, -FACTOR, X( KBEG ), 1, X( 2*NXFRM+1 ), $ 1, A( KBEG, 1 ), LDA ) * END IF * IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN * * Apply H(k) from the right. * CALL DGEMV( 'N', M, IXFRM, ONE, A( 1, KBEG ), LDA, $ X( KBEG ), 1, ZERO, X( 2*NXFRM+1 ), 1 ) CALL DGER( M, IXFRM, -FACTOR, X( 2*NXFRM+1 ), 1, X( KBEG ), $ 1, A( 1, KBEG ), LDA ) * END IF 30 CONTINUE * X( 2*NXFRM ) = SIGN( ONE, DLARND( 3, ISEED ) ) * * Scale the matrix A by D. * IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 ) THEN DO 40 IROW = 1, M CALL DSCAL( N, X( NXFRM+IROW ), A( IROW, 1 ), LDA ) 40 CONTINUE END IF * IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN DO 50 JCOL = 1, N CALL DSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 ) 50 CONTINUE END IF RETURN * * End of DLAROR * END