numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/MATGEN/slarot.f | 10435B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
*> \brief \b SLAROT * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, XLEFT, * XRIGHT ) * * .. Scalar Arguments .. * LOGICAL LLEFT, LRIGHT, LROWS * INTEGER LDA, NL * REAL C, S, XLEFT, XRIGHT * .. * .. Array Arguments .. * REAL A( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAROT applies a (Givens) rotation to two adjacent rows or *> columns, where one element of the first and/or last column/row *> for use on matrices stored in some format other than GE, so *> that elements of the matrix may be used or modified for which *> no array element is provided. *> *> One example is a symmetric matrix in SB format (bandwidth=4), for *> which UPLO='L': Two adjacent rows will have the format: *> *> row j: C> C> C> C> C> . . . . *> row j+1: C> C> C> C> C> . . . . *> *> '*' indicates elements for which storage is provided, *> '.' indicates elements for which no storage is provided, but *> are not necessarily zero; their values are determined by *> symmetry. ' ' indicates elements which are necessarily zero, *> and have no storage provided. *> *> Those columns which have two '*'s can be handled by SROT. *> Those columns which have no '*'s can be ignored, since as long *> as the Givens rotations are carefully applied to preserve *> symmetry, their values are determined. *> Those columns which have one '*' have to be handled separately, *> by using separate variables "p" and "q": *> *> row j: C> C> C> C> C> p . . . *> row j+1: q C> C> C> C> C> . . . . *> *> The element p would have to be set correctly, then that column *> is rotated, setting p to its new value. The next call to *> SLAROT would rotate columns j and j+1, using p, and restore *> symmetry. The element q would start out being zero, and be *> made non-zero by the rotation. Later, rotations would presumably *> be chosen to zero q out. *> *> Typical Calling Sequences: rotating the i-th and (i+1)-st rows. *> ------- ------- --------- *> *> General dense matrix: *> *> CALL SLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S, *> A(i,1),LDA, DUMMY, DUMMY) *> *> General banded matrix in GB format: *> *> j = MAX(1, i-KL ) *> NL = MIN( N, i+KU+1 ) + 1-j *> CALL SLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S, *> A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT ) *> *> [ note that i+1-j is just MIN(i,KL+1) ] *> *> Symmetric banded matrix in SY format, bandwidth K, *> lower triangle only: *> *> j = MAX(1, i-K ) *> NL = MIN( K+1, i ) + 1 *> CALL SLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S, *> A(i,j), LDA, XLEFT, XRIGHT ) *> *> Same, but upper triangle only: *> *> NL = MIN( K+1, N-i ) + 1 *> CALL SLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S, *> A(i,i), LDA, XLEFT, XRIGHT ) *> *> Symmetric banded matrix in SB format, bandwidth K, *> lower triangle only: *> *> [ same as for SY, except:] *> . . . . *> A(i+1-j,j), LDA-1, XLEFT, XRIGHT ) *> *> [ note that i+1-j is just MIN(i,K+1) ] *> *> Same, but upper triangle only: *> . . . *> A(K+1,i), LDA-1, XLEFT, XRIGHT ) *> *> Rotating columns is just the transpose of rotating rows, except *> for GB and SB: (rotating columns i and i+1) *> *> GB: *> j = MAX(1, i-KU ) *> NL = MIN( N, i+KL+1 ) + 1-j *> CALL SLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S, *> A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM ) *> *> [note that KU+j+1-i is just MAX(1,KU+2-i)] *> *> SB: (upper triangle) *> *> . . . . . . *> A(K+j+1-i,i),LDA-1, XTOP, XBOTTM ) *> *> SB: (lower triangle) *> *> . . . . . . *> A(1,i),LDA-1, XTOP, XBOTTM ) *> \endverbatim * * Arguments: * ========== * *> \verbatim *> LROWS - LOGICAL *> If .TRUE., then SLAROT will rotate two rows. If .FALSE., *> then it will rotate two columns. *> Not modified. *> *> LLEFT - LOGICAL *> If .TRUE., then XLEFT will be used instead of the *> corresponding element of A for the first element in the *> second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) *> If .FALSE., then the corresponding element of A will be *> used. *> Not modified. *> *> LRIGHT - LOGICAL *> If .TRUE., then XRIGHT will be used instead of the *> corresponding element of A for the last element in the *> first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If *> .FALSE., then the corresponding element of A will be used. *> Not modified. *> *> NL - INTEGER *> The length of the rows (if LROWS=.TRUE.) or columns (if *> LROWS=.FALSE.) to be rotated. If XLEFT and/or XRIGHT are *> used, the columns/rows they are in should be included in *> NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at *> least 2. The number of rows/columns to be rotated *> exclusive of those involving XLEFT and/or XRIGHT may *> not be negative, i.e., NL minus how many of LLEFT and *> LRIGHT are .TRUE. must be at least zero; if not, XERBLA *> will be called. *> Not modified. *> *> C, S - REAL *> Specify the Givens rotation to be applied. If LROWS is *> true, then the matrix ( c s ) *> (-s c ) is applied from the left; *> if false, then the transpose thereof is applied from the *> right. For a Givens rotation, C**2 + S**2 should be 1, *> but this is not checked. *> Not modified. *> *> A - REAL array. *> The array containing the rows/columns to be rotated. The *> first element of A should be the upper left element to *> be rotated. *> Read and modified. *> *> LDA - INTEGER *> The "effective" leading dimension of A. If A contains *> a matrix stored in GE or SY format, then this is just *> the leading dimension of A as dimensioned in the calling *> routine. If A contains a matrix stored in band (GB or SB) *> format, then this should be *one less* than the leading *> dimension used in the calling routine. Thus, if *> A were dimensioned A(LDA,*) in SLAROT, then A(1,j) would *> be the j-th element in the first of the two rows *> to be rotated, and A(2,j) would be the j-th in the second, *> regardless of how the array may be stored in the calling *> routine. [A cannot, however, actually be dimensioned thus, *> since for band format, the row number may exceed LDA, which *> is not legal FORTRAN.] *> If LROWS=.TRUE., then LDA must be at least 1, otherwise *> it must be at least NL minus the number of .TRUE. values *> in XLEFT and XRIGHT. *> Not modified. *> *> XLEFT - REAL *> If LLEFT is .TRUE., then XLEFT will be used and modified *> instead of A(2,1) (if LROWS=.TRUE.) or A(1,2) *> (if LROWS=.FALSE.). *> Read and modified. *> *> XRIGHT - REAL *> If LRIGHT is .TRUE., then XRIGHT will be used and modified *> instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1) *> (if LROWS=.FALSE.). *> Read and modified. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup real_matgen * * ===================================================================== SUBROUTINE SLAROT( LROWS, LLEFT, LRIGHT, NL, C, S, A, LDA, $ XLEFT, $ XRIGHT ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL LLEFT, LRIGHT, LROWS INTEGER LDA, NL REAL C, S, XLEFT, XRIGHT * .. * .. Array Arguments .. REAL A( * ) * .. * * ===================================================================== * * .. Local Scalars .. INTEGER IINC, INEXT, IX, IY, IYT, NT * .. * .. Local Arrays .. REAL XT( 2 ), YT( 2 ) * .. * .. External Subroutines .. EXTERNAL SROT, XERBLA * .. * .. Executable Statements .. * * Set up indices, arrays for ends * IF( LROWS ) THEN IINC = LDA INEXT = 1 ELSE IINC = 1 INEXT = LDA END IF * IF( LLEFT ) THEN NT = 1 IX = 1 + IINC IY = 2 + LDA XT( 1 ) = A( 1 ) YT( 1 ) = XLEFT ELSE NT = 0 IX = 1 IY = 1 + INEXT END IF * IF( LRIGHT ) THEN IYT = 1 + INEXT + ( NL-1 )*IINC NT = NT + 1 XT( NT ) = XRIGHT YT( NT ) = A( IYT ) END IF * * Check for errors * IF( NL.LT.NT ) THEN CALL XERBLA( 'SLAROT', 4 ) RETURN END IF IF( LDA.LE.0 .OR. ( .NOT.LROWS .AND. LDA.LT.NL-NT ) ) THEN CALL XERBLA( 'SLAROT', 8 ) RETURN END IF * * Rotate * CALL SROT( NL-NT, A( IX ), IINC, A( IY ), IINC, C, S ) CALL SROT( NT, XT, 1, YT, 1, C, S ) * * Stuff values back into XLEFT, XRIGHT, etc. * IF( LLEFT ) THEN A( 1 ) = XT( 1 ) XLEFT = YT( 1 ) END IF * IF( LRIGHT ) THEN XRIGHT = XT( NT ) A( IYT ) = YT( NT ) END IF * RETURN * * End of SLAROT * END