numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/MATGEN/slatm3.f | 9660B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
*> \brief \b SLATM3 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * REAL FUNCTION SLATM3( M, N, I, J, ISUB, JSUB, KL, KU, * IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, * SPARSE ) * * .. Scalar Arguments .. * * INTEGER I, IDIST, IGRADE, IPVTNG, ISUB, J, JSUB, KL, * $ KU, M, N * REAL SPARSE * .. * * .. Array Arguments .. * * INTEGER ISEED( 4 ), IWORK( * ) * REAL D( * ), DL( * ), DR( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLATM3 returns the (ISUB,JSUB) entry of a random matrix of *> dimension (M, N) described by the other parameters. (ISUB,JSUB) *> is the final position of the (I,J) entry after pivoting *> according to IPVTNG and IWORK. SLATM3 is called by the *> SLATMR routine in order to build random test matrices. No error *> checking on parameters is done, because this routine is called in *> a tight loop by SLATMR which has already checked the parameters. *> *> Use of SLATM3 differs from SLATM2 in the order in which the random *> number generator is called to fill in random matrix entries. *> With SLATM2, the generator is called to fill in the pivoted matrix *> columnwise. With SLATM3, the generator is called to fill in the *> matrix columnwise, after which it is pivoted. Thus, SLATM3 can *> be used to construct random matrices which differ only in their *> order of rows and/or columns. SLATM2 is used to construct band *> matrices while avoiding calling the random number generator for *> entries outside the band (and therefore generating random numbers *> in different orders for different pivot orders). *> *> The matrix whose (ISUB,JSUB) entry is returned is constructed as *> follows (this routine only computes one entry): *> *> If ISUB is outside (1..M) or JSUB is outside (1..N), return zero *> (this is convenient for generating matrices in band format). *> *> Generate a matrix A with random entries of distribution IDIST. *> *> Set the diagonal to D. *> *> Grade the matrix, if desired, from the left (by DL) and/or *> from the right (by DR or DL) as specified by IGRADE. *> *> Permute, if desired, the rows and/or columns as specified by *> IPVTNG and IWORK. *> *> Band the matrix to have lower bandwidth KL and upper *> bandwidth KU. *> *> Set random entries to zero as specified by SPARSE. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> Number of rows of matrix. Not modified. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> Number of columns of matrix. Not modified. *> \endverbatim *> *> \param[in] I *> \verbatim *> I is INTEGER *> Row of unpivoted entry to be returned. Not modified. *> \endverbatim *> *> \param[in] J *> \verbatim *> J is INTEGER *> Column of unpivoted entry to be returned. Not modified. *> \endverbatim *> *> \param[in,out] ISUB *> \verbatim *> ISUB is INTEGER *> Row of pivoted entry to be returned. Changed on exit. *> \endverbatim *> *> \param[in,out] JSUB *> \verbatim *> JSUB is INTEGER *> Column of pivoted entry to be returned. Changed on exit. *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> Lower bandwidth. Not modified. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> Upper bandwidth. Not modified. *> \endverbatim *> *> \param[in] IDIST *> \verbatim *> IDIST is INTEGER *> On entry, IDIST specifies the type of distribution to be *> used to generate a random matrix . *> 1 => UNIFORM( 0, 1 ) *> 2 => UNIFORM( -1, 1 ) *> 3 => NORMAL( 0, 1 ) *> Not modified. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array of dimension ( 4 ) *> Seed for random number generator. *> Changed on exit. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array of dimension ( MIN( I , J ) ) *> Diagonal entries of matrix. Not modified. *> \endverbatim *> *> \param[in] IGRADE *> \verbatim *> IGRADE is INTEGER *> Specifies grading of matrix as follows: *> 0 => no grading *> 1 => matrix premultiplied by diag( DL ) *> 2 => matrix postmultiplied by diag( DR ) *> 3 => matrix premultiplied by diag( DL ) and *> postmultiplied by diag( DR ) *> 4 => matrix premultiplied by diag( DL ) and *> postmultiplied by inv( diag( DL ) ) *> 5 => matrix premultiplied by diag( DL ) and *> postmultiplied by diag( DL ) *> Not modified. *> \endverbatim *> *> \param[in] DL *> \verbatim *> DL is REAL array ( I or J, as appropriate ) *> Left scale factors for grading matrix. Not modified. *> \endverbatim *> *> \param[in] DR *> \verbatim *> DR is REAL array ( I or J, as appropriate ) *> Right scale factors for grading matrix. Not modified. *> \endverbatim *> *> \param[in] IPVTNG *> \verbatim *> IPVTNG is INTEGER *> On entry specifies pivoting permutations as follows: *> 0 => none. *> 1 => row pivoting. *> 2 => column pivoting. *> 3 => full pivoting, i.e., on both sides. *> Not modified. *> \endverbatim *> *> \param[in] IWORK *> \verbatim *> IWORK is INTEGER array ( I or J, as appropriate ) *> This array specifies the permutation used. The *> row (or column) originally in position K is in *> position IWORK( K ) after pivoting. *> This differs from IWORK for SLATM2. Not modified. *> \endverbatim *> *> \param[in] SPARSE *> \verbatim *> SPARSE is REAL between 0. and 1. *> On entry specifies the sparsity of the matrix *> if sparse matrix is to be generated. *> SPARSE should lie between 0 and 1. *> A uniform ( 0, 1 ) random number x is generated and *> compared to SPARSE; if x is larger the matrix entry *> is unchanged and if x is smaller the entry is set *> to zero. Thus on the average a fraction SPARSE of the *> entries will be set to zero. *> Not modified. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup real_matgen * * ===================================================================== REAL FUNCTION SLATM3( M, N, I, J, ISUB, JSUB, KL, $ KU, $ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, $ SPARSE ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. * INTEGER I, IDIST, IGRADE, IPVTNG, ISUB, J, JSUB, KL, $ KU, M, N REAL SPARSE * .. * * .. Array Arguments .. * INTEGER ISEED( 4 ), IWORK( * ) REAL D( * ), DL( * ), DR( * ) * .. * * ===================================================================== * * .. Parameters .. * REAL ZERO PARAMETER ( ZERO = 0.0E0 ) * .. * * .. Local Scalars .. * REAL TEMP * .. * * .. External Functions .. * REAL SLARAN, SLARND EXTERNAL SLARAN, SLARND * .. * *----------------------------------------------------------------------- * * .. Executable Statements .. * * * Check for I and J in range * IF( I.LT.1 .OR. I.GT.M .OR. J.LT.1 .OR. J.GT.N ) THEN ISUB = I JSUB = J SLATM3 = ZERO RETURN END IF * * Compute subscripts depending on IPVTNG * IF( IPVTNG.EQ.0 ) THEN ISUB = I JSUB = J ELSE IF( IPVTNG.EQ.1 ) THEN ISUB = IWORK( I ) JSUB = J ELSE IF( IPVTNG.EQ.2 ) THEN ISUB = I JSUB = IWORK( J ) ELSE IF( IPVTNG.EQ.3 ) THEN ISUB = IWORK( I ) JSUB = IWORK( J ) END IF * * Check for banding * IF( JSUB.GT.ISUB+KU .OR. JSUB.LT.ISUB-KL ) THEN SLATM3 = ZERO RETURN END IF * * Check for sparsity * IF( SPARSE.GT.ZERO ) THEN IF( SLARAN( ISEED ).LT.SPARSE ) THEN SLATM3 = ZERO RETURN END IF END IF * * Compute entry and grade it according to IGRADE * IF( I.EQ.J ) THEN TEMP = D( I ) ELSE TEMP = SLARND( IDIST, ISEED ) END IF IF( IGRADE.EQ.1 ) THEN TEMP = TEMP*DL( I ) ELSE IF( IGRADE.EQ.2 ) THEN TEMP = TEMP*DR( J ) ELSE IF( IGRADE.EQ.3 ) THEN TEMP = TEMP*DL( I )*DR( J ) ELSE IF( IGRADE.EQ.4 .AND. I.NE.J ) THEN TEMP = TEMP*DL( I ) / DL( J ) ELSE IF( IGRADE.EQ.5 ) THEN TEMP = TEMP*DL( I )*DL( J ) END IF SLATM3 = TEMP RETURN * * End of SLATM3 * END