numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/TESTING/MATGEN/slatmr.f 43147B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
*> \brief \b SLATMR
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLATMR( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
*                          RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER,
*                          CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM,
*                          PACK, A, LDA, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIST, GRADE, PACK, PIVTNG, RSIGN, SYM
*       INTEGER            INFO, KL, KU, LDA, M, MODE, MODEL, MODER, N
*       REAL               ANORM, COND, CONDL, CONDR, DMAX, SPARSE
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIVOT( * ), ISEED( 4 ), IWORK( * )
*       REAL               A( LDA, * ), D( * ), DL( * ), DR( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    SLATMR generates random matrices of various types for testing
*>    LAPACK programs.
*>
*>    SLATMR operates by applying the following sequence of
*>    operations:
*>
*>      Generate a matrix A with random entries of distribution DIST
*>         which is symmetric if SYM='S', and nonsymmetric
*>         if SYM='N'.
*>
*>      Set the diagonal to D, where D may be input or
*>         computed according to MODE, COND, DMAX and RSIGN
*>         as described below.
*>
*>      Grade the matrix, if desired, from the left and/or right
*>         as specified by GRADE. The inputs DL, MODEL, CONDL, DR,
*>         MODER and CONDR also determine the grading as described
*>         below.
*>
*>      Permute, if desired, the rows and/or columns as specified by
*>         PIVTNG and IPIVOT.
*>
*>      Set random entries to zero, if desired, to get a random sparse
*>         matrix as specified by SPARSE.
*>
*>      Make A a band matrix, if desired, by zeroing out the matrix
*>         outside a band of lower bandwidth KL and upper bandwidth KU.
*>
*>      Scale A, if desired, to have maximum entry ANORM.
*>
*>      Pack the matrix if desired. Options specified by PACK are:
*>         no packing
*>         zero out upper half (if symmetric)
*>         zero out lower half (if symmetric)
*>         store the upper half columnwise (if symmetric or
*>             square upper triangular)
*>         store the lower half columnwise (if symmetric or
*>             square lower triangular)
*>             same as upper half rowwise if symmetric
*>         store the lower triangle in banded format (if symmetric)
*>         store the upper triangle in banded format (if symmetric)
*>         store the entire matrix in banded format
*>
*>    Note: If two calls to SLATMR differ only in the PACK parameter,
*>          they will generate mathematically equivalent matrices.
*>
*>          If two calls to SLATMR both have full bandwidth (KL = M-1
*>          and KU = N-1), and differ only in the PIVTNG and PACK
*>          parameters, then the matrices generated will differ only
*>          in the order of the rows and/or columns, and otherwise
*>          contain the same data. This consistency cannot be and
*>          is not maintained with less than full bandwidth.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           Number of rows of A. Not modified.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           Number of columns of A. Not modified.
*> \endverbatim
*>
*> \param[in] DIST
*> \verbatim
*>          DIST is CHARACTER*1
*>           On entry, DIST specifies the type of distribution to be used
*>           to generate a random matrix .
*>           'U' => UNIFORM( 0, 1 )  ( 'U' for uniform )
*>           'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
*>           'N' => NORMAL( 0, 1 )   ( 'N' for normal )
*>           Not modified.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>           On entry ISEED specifies the seed of the random number
*>           generator. They should lie between 0 and 4095 inclusive,
*>           and ISEED(4) should be odd. The random number generator
*>           uses a linear congruential sequence limited to small
*>           integers, and so should produce machine independent
*>           random numbers. The values of ISEED are changed on
*>           exit, and can be used in the next call to SLATMR
*>           to continue the same random number sequence.
*>           Changed on exit.
*> \endverbatim
*>
*> \param[in] SYM
*> \verbatim
*>          SYM is CHARACTER*1
*>           If SYM='S' or 'H', generated matrix is symmetric.
*>           If SYM='N', generated matrix is nonsymmetric.
*>           Not modified.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is REAL array, dimension (min(M,N))
*>           On entry this array specifies the diagonal entries
*>           of the diagonal of A.  D may either be specified
*>           on entry, or set according to MODE and COND as described
*>           below. May be changed on exit if MODE is nonzero.
*> \endverbatim
*>
*> \param[in] MODE
*> \verbatim
*>          MODE is INTEGER
*>           On entry describes how D is to be used:
*>           MODE = 0 means use D as input
*>           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
*>           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
*>           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
*>           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
*>           MODE = 5 sets D to random numbers in the range
*>                    ( 1/COND , 1 ) such that their logarithms
*>                    are uniformly distributed.
*>           MODE = 6 set D to random numbers from same distribution
*>                    as the rest of the matrix.
*>           MODE < 0 has the same meaning as ABS(MODE), except that
*>              the order of the elements of D is reversed.
*>           Thus if MODE is positive, D has entries ranging from
*>              1 to 1/COND, if negative, from 1/COND to 1,
*>           Not modified.
*> \endverbatim
*>
*> \param[in] COND
*> \verbatim
*>          COND is REAL
*>           On entry, used as described under MODE above.
*>           If used, it must be >= 1. Not modified.
*> \endverbatim
*>
*> \param[in] DMAX
*> \verbatim
*>          DMAX is REAL
*>           If MODE neither -6, 0 nor 6, the diagonal is scaled by
*>           DMAX / max(abs(D(i))), so that maximum absolute entry
*>           of diagonal is abs(DMAX). If DMAX is negative (or zero),
*>           diagonal will be scaled by a negative number (or zero).
*> \endverbatim
*>
*> \param[in] RSIGN
*> \verbatim
*>          RSIGN is CHARACTER*1
*>           If MODE neither -6, 0 nor 6, specifies sign of diagonal
*>           as follows:
*>           'T' => diagonal entries are multiplied by 1 or -1
*>                  with probability .5
*>           'F' => diagonal unchanged
*>           Not modified.
*> \endverbatim
*>
*> \param[in] GRADE
*> \verbatim
*>          GRADE is CHARACTER*1
*>           Specifies grading of matrix as follows:
*>           'N'  => no grading
*>           'L'  => matrix premultiplied by diag( DL )
*>                   (only if matrix nonsymmetric)
*>           'R'  => matrix postmultiplied by diag( DR )
*>                   (only if matrix nonsymmetric)
*>           'B'  => matrix premultiplied by diag( DL ) and
*>                         postmultiplied by diag( DR )
*>                   (only if matrix nonsymmetric)
*>           'S' or 'H'  => matrix premultiplied by diag( DL ) and
*>                          postmultiplied by diag( DL )
*>                          ('S' for symmetric, or 'H' for Hermitian)
*>           'E'  => matrix premultiplied by diag( DL ) and
*>                         postmultiplied by inv( diag( DL ) )
*>                         ( 'E' for eigenvalue invariance)
*>                   (only if matrix nonsymmetric)
*>                   Note: if GRADE='E', then M must equal N.
*>           Not modified.
*> \endverbatim
*>
*> \param[in,out] DL
*> \verbatim
*>          DL is REAL array, dimension (M)
*>           If MODEL=0, then on entry this array specifies the diagonal
*>           entries of a diagonal matrix used as described under GRADE
*>           above. If MODEL is not zero, then DL will be set according
*>           to MODEL and CONDL, analogous to the way D is set according
*>           to MODE and COND (except there is no DMAX parameter for DL).
*>           If GRADE='E', then DL cannot have zero entries.
*>           Not referenced if GRADE = 'N' or 'R'. Changed on exit.
*> \endverbatim
*>
*> \param[in] MODEL
*> \verbatim
*>          MODEL is INTEGER
*>           This specifies how the diagonal array DL is to be computed,
*>           just as MODE specifies how D is to be computed.
*>           Not modified.
*> \endverbatim
*>
*> \param[in] CONDL
*> \verbatim
*>          CONDL is REAL
*>           When MODEL is not zero, this specifies the condition number
*>           of the computed DL.  Not modified.
*> \endverbatim
*>
*> \param[in,out] DR
*> \verbatim
*>          DR is REAL array, dimension (N)
*>           If MODER=0, then on entry this array specifies the diagonal
*>           entries of a diagonal matrix used as described under GRADE
*>           above. If MODER is not zero, then DR will be set according
*>           to MODER and CONDR, analogous to the way D is set according
*>           to MODE and COND (except there is no DMAX parameter for DR).
*>           Not referenced if GRADE = 'N', 'L', 'H', 'S' or 'E'.
*>           Changed on exit.
*> \endverbatim
*>
*> \param[in] MODER
*> \verbatim
*>          MODER is INTEGER
*>           This specifies how the diagonal array DR is to be computed,
*>           just as MODE specifies how D is to be computed.
*>           Not modified.
*> \endverbatim
*>
*> \param[in] CONDR
*> \verbatim
*>          CONDR is REAL
*>           When MODER is not zero, this specifies the condition number
*>           of the computed DR.  Not modified.
*> \endverbatim
*>
*> \param[in] PIVTNG
*> \verbatim
*>          PIVTNG is CHARACTER*1
*>           On entry specifies pivoting permutations as follows:
*>           'N' or ' ' => none.
*>           'L' => left or row pivoting (matrix must be nonsymmetric).
*>           'R' => right or column pivoting (matrix must be
*>                  nonsymmetric).
*>           'B' or 'F' => both or full pivoting, i.e., on both sides.
*>                         In this case, M must equal N
*>
*>           If two calls to SLATMR both have full bandwidth (KL = M-1
*>           and KU = N-1), and differ only in the PIVTNG and PACK
*>           parameters, then the matrices generated will differ only
*>           in the order of the rows and/or columns, and otherwise
*>           contain the same data. This consistency cannot be
*>           maintained with less than full bandwidth.
*> \endverbatim
*>
*> \param[in] IPIVOT
*> \verbatim
*>          IPIVOT is INTEGER array, dimension (N or M)
*>           This array specifies the permutation used.  After the
*>           basic matrix is generated, the rows, columns, or both
*>           are permuted.   If, say, row pivoting is selected, SLATMR
*>           starts with the *last* row and interchanges the M-th and
*>           IPIVOT(M)-th rows, then moves to the next-to-last row,
*>           interchanging the (M-1)-th and the IPIVOT(M-1)-th rows,
*>           and so on.  In terms of "2-cycles", the permutation is
*>           (1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M))
*>           where the rightmost cycle is applied first.  This is the
*>           *inverse* of the effect of pivoting in LINPACK.  The idea
*>           is that factoring (with pivoting) an identity matrix
*>           which has been inverse-pivoted in this way should
*>           result in a pivot vector identical to IPIVOT.
*>           Not referenced if PIVTNG = 'N'. Not modified.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>           On entry specifies the lower bandwidth of the  matrix. For
*>           example, KL=0 implies upper triangular, KL=1 implies upper
*>           Hessenberg, and KL at least M-1 implies the matrix is not
*>           banded. Must equal KU if matrix is symmetric.
*>           Not modified.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>           On entry specifies the upper bandwidth of the  matrix. For
*>           example, KU=0 implies lower triangular, KU=1 implies lower
*>           Hessenberg, and KU at least N-1 implies the matrix is not
*>           banded. Must equal KL if matrix is symmetric.
*>           Not modified.
*> \endverbatim
*>
*> \param[in] SPARSE
*> \verbatim
*>          SPARSE is REAL
*>           On entry specifies the sparsity of the matrix if a sparse
*>           matrix is to be generated. SPARSE should lie between
*>           0 and 1. To generate a sparse matrix, for each matrix entry
*>           a uniform ( 0, 1 ) random number x is generated and
*>           compared to SPARSE; if x is larger the matrix entry
*>           is unchanged and if x is smaller the entry is set
*>           to zero. Thus on the average a fraction SPARSE of the
*>           entries will be set to zero.
*>           Not modified.
*> \endverbatim
*>
*> \param[in] ANORM
*> \verbatim
*>          ANORM is REAL
*>           On entry specifies maximum entry of output matrix
*>           (output matrix will by multiplied by a constant so that
*>           its largest absolute entry equal ANORM)
*>           if ANORM is nonnegative. If ANORM is negative no scaling
*>           is done. Not modified.
*> \endverbatim
*>
*> \param[in] PACK
*> \verbatim
*>          PACK is CHARACTER*1
*>           On entry specifies packing of matrix as follows:
*>           'N' => no packing
*>           'U' => zero out all subdiagonal entries (if symmetric)
*>           'L' => zero out all superdiagonal entries (if symmetric)
*>           'C' => store the upper triangle columnwise
*>                  (only if matrix symmetric or square upper triangular)
*>           'R' => store the lower triangle columnwise
*>                  (only if matrix symmetric or square lower triangular)
*>                  (same as upper half rowwise if symmetric)
*>           'B' => store the lower triangle in band storage scheme
*>                  (only if matrix symmetric)
*>           'Q' => store the upper triangle in band storage scheme
*>                  (only if matrix symmetric)
*>           'Z' => store the entire matrix in band storage scheme
*>                      (pivoting can be provided for by using this
*>                      option to store A in the trailing rows of
*>                      the allocated storage)
*>
*>           Using these options, the various LAPACK packed and banded
*>           storage schemes can be obtained:
*>           GB               - use 'Z'
*>           PB, SB or TB     - use 'B' or 'Q'
*>           PP, SP or TP     - use 'C' or 'R'
*>
*>           If two calls to SLATMR differ only in the PACK parameter,
*>           they will generate mathematically equivalent matrices.
*>           Not modified.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>           On exit A is the desired test matrix. Only those
*>           entries of A which are significant on output
*>           will be referenced (even if A is in packed or band
*>           storage format). The 'unoccupied corners' of A in
*>           band format will be zeroed out.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           on entry LDA specifies the first dimension of A as
*>           declared in the calling program.
*>           If PACK='N', 'U' or 'L', LDA must be at least max ( 1, M ).
*>           If PACK='C' or 'R', LDA must be at least 1.
*>           If PACK='B', or 'Q', LDA must be MIN ( KU+1, N )
*>           If PACK='Z', LDA must be at least KUU+KLL+1, where
*>           KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, M-1 )
*>           Not modified.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension ( N or M)
*>           Workspace. Not referenced if PIVTNG = 'N'. Changed on exit.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>           Error parameter on exit:
*>             0 => normal return
*>            -1 => M negative or unequal to N and SYM='S' or 'H'
*>            -2 => N negative
*>            -3 => DIST illegal string
*>            -5 => SYM illegal string
*>            -7 => MODE not in range -6 to 6
*>            -8 => COND less than 1.0, and MODE neither -6, 0 nor 6
*>           -10 => MODE neither -6, 0 nor 6 and RSIGN illegal string
*>           -11 => GRADE illegal string, or GRADE='E' and
*>                  M not equal to N, or GRADE='L', 'R', 'B' or 'E' and
*>                  SYM = 'S' or 'H'
*>           -12 => GRADE = 'E' and DL contains zero
*>           -13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H',
*>                  'S' or 'E'
*>           -14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E',
*>                  and MODEL neither -6, 0 nor 6
*>           -16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B'
*>           -17 => CONDR less than 1.0, GRADE='R' or 'B', and
*>                  MODER neither -6, 0 nor 6
*>           -18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and
*>                  M not equal to N, or PIVTNG='L' or 'R' and SYM='S'
*>                  or 'H'
*>           -19 => IPIVOT contains out of range number and
*>                  PIVTNG not equal to 'N'
*>           -20 => KL negative
*>           -21 => KU negative, or SYM='S' or 'H' and KU not equal to KL
*>           -22 => SPARSE not in range 0. to 1.
*>           -24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q'
*>                  and SYM='N', or PACK='C' and SYM='N' and either KL
*>                  not equal to 0 or N not equal to M, or PACK='R' and
*>                  SYM='N', and either KU not equal to 0 or N not equal
*>                  to M
*>           -26 => LDA too small
*>             1 => Error return from SLATM1 (computing D)
*>             2 => Cannot scale diagonal to DMAX (max. entry is 0)
*>             3 => Error return from SLATM1 (computing DL)
*>             4 => Error return from SLATM1 (computing DR)
*>             5 => ANORM is positive, but matrix constructed prior to
*>                  attempting to scale it to have norm ANORM, is zero
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup real_matgen
*
*  =====================================================================
      SUBROUTINE SLATMR( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
     $                   RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER,
     $                   CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM,
     $                   PACK, A, LDA, IWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          DIST, GRADE, PACK, PIVTNG, RSIGN, SYM
      INTEGER            INFO, KL, KU, LDA, M, MODE, MODEL, MODER, N
      REAL               ANORM, COND, CONDL, CONDR, DMAX, SPARSE
*     ..
*     .. Array Arguments ..
      INTEGER            IPIVOT( * ), ISEED( 4 ), IWORK( * )
      REAL               A( LDA, * ), D( * ), DL( * ), DR( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            BADPVT, DZERO, FULBND
      INTEGER            I, IDIST, IGRADE, IISUB, IPACK, IPVTNG, IRSIGN,
     $                   ISUB, ISYM, J, JJSUB, JSUB, K, KLL, KUU, MNMIN,
     $                   MNSUB, MXSUB, NPVTS
      REAL               ALPHA, ONORM, TEMP
*     ..
*     .. Local Arrays ..
      REAL               TEMPA( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLANGB, SLANGE, SLANSB,
     $                   SLANSP, SLANSY, SLATM2,
     $                   SLATM3
      EXTERNAL           LSAME, SLANGB, SLANGE,
     $                   SLANSB, SLANSP, SLANSY,
     $                   SLATM2, SLATM3
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLATM1, SSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     1)      Decode and Test the input parameters.
*             Initialize flags & seed.
*
      INFO = 0
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Decode DIST
*
      IF( LSAME( DIST, 'U' ) ) THEN
         IDIST = 1
      ELSE IF( LSAME( DIST, 'S' ) ) THEN
         IDIST = 2
      ELSE IF( LSAME( DIST, 'N' ) ) THEN
         IDIST = 3
      ELSE
         IDIST = -1
      END IF
*
*     Decode SYM
*
      IF( LSAME( SYM, 'S' ) ) THEN
         ISYM = 0
      ELSE IF( LSAME( SYM, 'N' ) ) THEN
         ISYM = 1
      ELSE IF( LSAME( SYM, 'H' ) ) THEN
         ISYM = 0
      ELSE
         ISYM = -1
      END IF
*
*     Decode RSIGN
*
      IF( LSAME( RSIGN, 'F' ) ) THEN
         IRSIGN = 0
      ELSE IF( LSAME( RSIGN, 'T' ) ) THEN
         IRSIGN = 1
      ELSE
         IRSIGN = -1
      END IF
*
*     Decode PIVTNG
*
      IF( LSAME( PIVTNG, 'N' ) ) THEN
         IPVTNG = 0
      ELSE IF( LSAME( PIVTNG, ' ' ) ) THEN
         IPVTNG = 0
      ELSE IF( LSAME( PIVTNG, 'L' ) ) THEN
         IPVTNG = 1
         NPVTS = M
      ELSE IF( LSAME( PIVTNG, 'R' ) ) THEN
         IPVTNG = 2
         NPVTS = N
      ELSE IF( LSAME( PIVTNG, 'B' ) ) THEN
         IPVTNG = 3
         NPVTS = MIN( N, M )
      ELSE IF( LSAME( PIVTNG, 'F' ) ) THEN
         IPVTNG = 3
         NPVTS = MIN( N, M )
      ELSE
         IPVTNG = -1
      END IF
*
*     Decode GRADE
*
      IF( LSAME( GRADE, 'N' ) ) THEN
         IGRADE = 0
      ELSE IF( LSAME( GRADE, 'L' ) ) THEN
         IGRADE = 1
      ELSE IF( LSAME( GRADE, 'R' ) ) THEN
         IGRADE = 2
      ELSE IF( LSAME( GRADE, 'B' ) ) THEN
         IGRADE = 3
      ELSE IF( LSAME( GRADE, 'E' ) ) THEN
         IGRADE = 4
      ELSE IF( LSAME( GRADE, 'H' ) .OR. LSAME( GRADE, 'S' ) ) THEN
         IGRADE = 5
      ELSE
         IGRADE = -1
      END IF
*
*     Decode PACK
*
      IF( LSAME( PACK, 'N' ) ) THEN
         IPACK = 0
      ELSE IF( LSAME( PACK, 'U' ) ) THEN
         IPACK = 1
      ELSE IF( LSAME( PACK, 'L' ) ) THEN
         IPACK = 2
      ELSE IF( LSAME( PACK, 'C' ) ) THEN
         IPACK = 3
      ELSE IF( LSAME( PACK, 'R' ) ) THEN
         IPACK = 4
      ELSE IF( LSAME( PACK, 'B' ) ) THEN
         IPACK = 5
      ELSE IF( LSAME( PACK, 'Q' ) ) THEN
         IPACK = 6
      ELSE IF( LSAME( PACK, 'Z' ) ) THEN
         IPACK = 7
      ELSE
         IPACK = -1
      END IF
*
*     Set certain internal parameters
*
      MNMIN = MIN( M, N )
      KLL = MIN( KL, M-1 )
      KUU = MIN( KU, N-1 )
*
*     If inv(DL) is used, check to see if DL has a zero entry.
*
      DZERO = .FALSE.
      IF( IGRADE.EQ.4 .AND. MODEL.EQ.0 ) THEN
         DO 10 I = 1, M
            IF( DL( I ).EQ.ZERO )
     $         DZERO = .TRUE.
   10    CONTINUE
      END IF
*
*     Check values in IPIVOT
*
      BADPVT = .FALSE.
      IF( IPVTNG.GT.0 ) THEN
         DO 20 J = 1, NPVTS
            IF( IPIVOT( J ).LE.0 .OR. IPIVOT( J ).GT.NPVTS )
     $         BADPVT = .TRUE.
   20    CONTINUE
      END IF
*
*     Set INFO if an error
*
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.NE.N .AND. ISYM.EQ.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( IDIST.EQ.-1 ) THEN
         INFO = -3
      ELSE IF( ISYM.EQ.-1 ) THEN
         INFO = -5
      ELSE IF( MODE.LT.-6 .OR. MODE.GT.6 ) THEN
         INFO = -7
      ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $         COND.LT.ONE ) THEN
         INFO = -8
      ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $         IRSIGN.EQ.-1 ) THEN
         INFO = -10
      ELSE IF( IGRADE.EQ.-1 .OR. ( IGRADE.EQ.4 .AND. M.NE.N ) .OR.
     $         ( ( IGRADE.GE.1 .AND. IGRADE.LE.4 ) .AND. ISYM.EQ.0 ) )
     $          THEN
         INFO = -11
      ELSE IF( IGRADE.EQ.4 .AND. DZERO ) THEN
         INFO = -12
      ELSE IF( ( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR.
     $         IGRADE.EQ.5 ) .AND. ( MODEL.LT.-6 .OR. MODEL.GT.6 ) )
     $          THEN
         INFO = -13
      ELSE IF( ( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR.
     $         IGRADE.EQ.5 ) .AND. ( MODEL.NE.-6 .AND. MODEL.NE.0 .AND.
     $         MODEL.NE.6 ) .AND. CONDL.LT.ONE ) THEN
         INFO = -14
      ELSE IF( ( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) .AND.
     $         ( MODER.LT.-6 .OR. MODER.GT.6 ) ) THEN
         INFO = -16
      ELSE IF( ( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) .AND.
     $         ( MODER.NE.-6 .AND. MODER.NE.0 .AND. MODER.NE.6 ) .AND.
     $         CONDR.LT.ONE ) THEN
         INFO = -17
      ELSE IF( IPVTNG.EQ.-1 .OR. ( IPVTNG.EQ.3 .AND. M.NE.N ) .OR.
     $         ( ( IPVTNG.EQ.1 .OR. IPVTNG.EQ.2 ) .AND. ISYM.EQ.0 ) )
     $          THEN
         INFO = -18
      ELSE IF( IPVTNG.NE.0 .AND. BADPVT ) THEN
         INFO = -19
      ELSE IF( KL.LT.0 ) THEN
         INFO = -20
      ELSE IF( KU.LT.0 .OR. ( ISYM.EQ.0 .AND. KL.NE.KU ) ) THEN
         INFO = -21
      ELSE IF( SPARSE.LT.ZERO .OR. SPARSE.GT.ONE ) THEN
         INFO = -22
      ELSE IF( IPACK.EQ.-1 .OR. ( ( IPACK.EQ.1 .OR. IPACK.EQ.2 .OR.
     $         IPACK.EQ.5 .OR. IPACK.EQ.6 ) .AND. ISYM.EQ.1 ) .OR.
     $         ( IPACK.EQ.3 .AND. ISYM.EQ.1 .AND. ( KL.NE.0 .OR. M.NE.
     $         N ) ) .OR. ( IPACK.EQ.4 .AND. ISYM.EQ.1 .AND. ( KU.NE.
     $         0 .OR. M.NE.N ) ) ) THEN
         INFO = -24
      ELSE IF( ( ( IPACK.EQ.0 .OR. IPACK.EQ.1 .OR. IPACK.EQ.2 ) .AND.
     $         LDA.LT.MAX( 1, M ) ) .OR. ( ( IPACK.EQ.3 .OR. IPACK.EQ.
     $         4 ) .AND. LDA.LT.1 ) .OR. ( ( IPACK.EQ.5 .OR. IPACK.EQ.
     $         6 ) .AND. LDA.LT.KUU+1 ) .OR.
     $         ( IPACK.EQ.7 .AND. LDA.LT.KLL+KUU+1 ) ) THEN
         INFO = -26
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLATMR', -INFO )
         RETURN
      END IF
*
*     Decide if we can pivot consistently
*
      FULBND = .FALSE.
      IF( KUU.EQ.N-1 .AND. KLL.EQ.M-1 )
     $   FULBND = .TRUE.
*
*     Initialize random number generator
*
      DO 30 I = 1, 4
         ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
   30 CONTINUE
*
      ISEED( 4 ) = 2*( ISEED( 4 ) / 2 ) + 1
*
*     2)      Set up D, DL, and DR, if indicated.
*
*             Compute D according to COND and MODE
*
      CALL SLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, MNMIN, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = 1
         RETURN
      END IF
      IF( MODE.NE.0 .AND. MODE.NE.-6 .AND. MODE.NE.6 ) THEN
*
*        Scale by DMAX
*
         TEMP = ABS( D( 1 ) )
         DO 40 I = 2, MNMIN
            TEMP = MAX( TEMP, ABS( D( I ) ) )
   40    CONTINUE
         IF( TEMP.EQ.ZERO .AND. DMAX.NE.ZERO ) THEN
            INFO = 2
            RETURN
         END IF
         IF( TEMP.NE.ZERO ) THEN
            ALPHA = DMAX / TEMP
         ELSE
            ALPHA = ONE
         END IF
         DO 50 I = 1, MNMIN
            D( I ) = ALPHA*D( I )
   50    CONTINUE
*
      END IF
*
*     Compute DL if grading set
*
      IF( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR. IGRADE.EQ.
     $    5 ) THEN
         CALL SLATM1( MODEL, CONDL, 0, IDIST, ISEED, DL, M, INFO )
         IF( INFO.NE.0 ) THEN
            INFO = 3
            RETURN
         END IF
      END IF
*
*     Compute DR if grading set
*
      IF( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) THEN
         CALL SLATM1( MODER, CONDR, 0, IDIST, ISEED, DR, N, INFO )
         IF( INFO.NE.0 ) THEN
            INFO = 4
            RETURN
         END IF
      END IF
*
*     3)     Generate IWORK if pivoting
*
      IF( IPVTNG.GT.0 ) THEN
         DO 60 I = 1, NPVTS
            IWORK( I ) = I
   60    CONTINUE
         IF( FULBND ) THEN
            DO 70 I = 1, NPVTS
               K = IPIVOT( I )
               J = IWORK( I )
               IWORK( I ) = IWORK( K )
               IWORK( K ) = J
   70       CONTINUE
         ELSE
            DO 80 I = NPVTS, 1, -1
               K = IPIVOT( I )
               J = IWORK( I )
               IWORK( I ) = IWORK( K )
               IWORK( K ) = J
   80       CONTINUE
         END IF
      END IF
*
*     4)      Generate matrices for each kind of PACKing
*             Always sweep matrix columnwise (if symmetric, upper
*             half only) so that matrix generated does not depend
*             on PACK
*
      IF( FULBND ) THEN
*
*        Use SLATM3 so matrices generated with differing PIVOTing only
*        differ only in the order of their rows and/or columns.
*
         IF( IPACK.EQ.0 ) THEN
            IF( ISYM.EQ.0 ) THEN
               DO 100 J = 1, N
                  DO 90 I = 1, J
                     TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                      IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                      IWORK, SPARSE )
                     A( ISUB, JSUB ) = TEMP
                     A( JSUB, ISUB ) = TEMP
   90             CONTINUE
  100          CONTINUE
            ELSE IF( ISYM.EQ.1 ) THEN
               DO 120 J = 1, N
                  DO 110 I = 1, M
                     TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                      IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                      IWORK, SPARSE )
                     A( ISUB, JSUB ) = TEMP
  110             CONTINUE
  120          CONTINUE
            END IF
*
         ELSE IF( IPACK.EQ.1 ) THEN
*
            DO 140 J = 1, N
               DO 130 I = 1, J
                  TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                   IDIST,
     $                   ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                   SPARSE )
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  A( MNSUB, MXSUB ) = TEMP
                  IF( MNSUB.NE.MXSUB )
     $               A( MXSUB, MNSUB ) = ZERO
  130          CONTINUE
  140       CONTINUE
*
         ELSE IF( IPACK.EQ.2 ) THEN
*
            DO 160 J = 1, N
               DO 150 I = 1, J
                  TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                   IDIST,
     $                   ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                   SPARSE )
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  A( MXSUB, MNSUB ) = TEMP
                  IF( MNSUB.NE.MXSUB )
     $               A( MNSUB, MXSUB ) = ZERO
  150          CONTINUE
  160       CONTINUE
*
         ELSE IF( IPACK.EQ.3 ) THEN
*
            DO 180 J = 1, N
               DO 170 I = 1, J
                  TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                   IDIST,
     $                   ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                   SPARSE )
*
*                 Compute K = location of (ISUB,JSUB) entry in packed
*                 array
*
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  K = MXSUB*( MXSUB-1 ) / 2 + MNSUB
*
*                 Convert K to (IISUB,JJSUB) location
*
                  JJSUB = ( K-1 ) / LDA + 1
                  IISUB = K - LDA*( JJSUB-1 )
*
                  A( IISUB, JJSUB ) = TEMP
  170          CONTINUE
  180       CONTINUE
*
         ELSE IF( IPACK.EQ.4 ) THEN
*
            DO 200 J = 1, N
               DO 190 I = 1, J
                  TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                   IDIST,
     $                   ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                   SPARSE )
*
*                 Compute K = location of (I,J) entry in packed array
*
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  IF( MNSUB.EQ.1 ) THEN
                     K = MXSUB
                  ELSE
                     K = N*( N+1 ) / 2 - ( N-MNSUB+1 )*( N-MNSUB+2 ) /
     $                   2 + MXSUB - MNSUB + 1
                  END IF
*
*                 Convert K to (IISUB,JJSUB) location
*
                  JJSUB = ( K-1 ) / LDA + 1
                  IISUB = K - LDA*( JJSUB-1 )
*
                  A( IISUB, JJSUB ) = TEMP
  190          CONTINUE
  200       CONTINUE
*
         ELSE IF( IPACK.EQ.5 ) THEN
*
            DO 220 J = 1, N
               DO 210 I = J - KUU, J
                  IF( I.LT.1 ) THEN
                     A( J-I+1, I+N ) = ZERO
                  ELSE
                     TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                      IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                      IWORK, SPARSE )
                     MNSUB = MIN( ISUB, JSUB )
                     MXSUB = MAX( ISUB, JSUB )
                     A( MXSUB-MNSUB+1, MNSUB ) = TEMP
                  END IF
  210          CONTINUE
  220       CONTINUE
*
         ELSE IF( IPACK.EQ.6 ) THEN
*
            DO 240 J = 1, N
               DO 230 I = J - KUU, J
                  TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                   IDIST,
     $                   ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                   SPARSE )
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  A( MNSUB-MXSUB+KUU+1, MXSUB ) = TEMP
  230          CONTINUE
  240       CONTINUE
*
         ELSE IF( IPACK.EQ.7 ) THEN
*
            IF( ISYM.EQ.0 ) THEN
               DO 260 J = 1, N
                  DO 250 I = J - KUU, J
                     TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                      IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                      IWORK, SPARSE )
                     MNSUB = MIN( ISUB, JSUB )
                     MXSUB = MAX( ISUB, JSUB )
                     A( MNSUB-MXSUB+KUU+1, MXSUB ) = TEMP
                     IF( I.LT.1 )
     $                  A( J-I+1+KUU, I+N ) = ZERO
                     IF( I.GE.1 .AND. MNSUB.NE.MXSUB )
     $                  A( MXSUB-MNSUB+1+KUU, MNSUB ) = TEMP
  250             CONTINUE
  260          CONTINUE
            ELSE IF( ISYM.EQ.1 ) THEN
               DO 280 J = 1, N
                  DO 270 I = J - KUU, J + KLL
                     TEMP = SLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                      IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                      IWORK, SPARSE )
                     A( ISUB-JSUB+KUU+1, JSUB ) = TEMP
  270             CONTINUE
  280          CONTINUE
            END IF
*
         END IF
*
      ELSE
*
*        Use SLATM2
*
         IF( IPACK.EQ.0 ) THEN
            IF( ISYM.EQ.0 ) THEN
               DO 300 J = 1, N
                  DO 290 I = 1, J
                     A( I, J ) = SLATM2( M, N, I, J, KL, KU, IDIST,
     $                           ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                           IWORK, SPARSE )
                     A( J, I ) = A( I, J )
  290             CONTINUE
  300          CONTINUE
            ELSE IF( ISYM.EQ.1 ) THEN
               DO 320 J = 1, N
                  DO 310 I = 1, M
                     A( I, J ) = SLATM2( M, N, I, J, KL, KU, IDIST,
     $                           ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                           IWORK, SPARSE )
  310             CONTINUE
  320          CONTINUE
            END IF
*
         ELSE IF( IPACK.EQ.1 ) THEN
*
            DO 340 J = 1, N
               DO 330 I = 1, J
                  A( I, J ) = SLATM2( M, N, I, J, KL, KU, IDIST,
     $                        ISEED,
     $                        D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE )
                  IF( I.NE.J )
     $               A( J, I ) = ZERO
  330          CONTINUE
  340       CONTINUE
*
         ELSE IF( IPACK.EQ.2 ) THEN
*
            DO 360 J = 1, N
               DO 350 I = 1, J
                  A( J, I ) = SLATM2( M, N, I, J, KL, KU, IDIST,
     $                        ISEED,
     $                        D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE )
                  IF( I.NE.J )
     $               A( I, J ) = ZERO
  350          CONTINUE
  360       CONTINUE
*
         ELSE IF( IPACK.EQ.3 ) THEN
*
            ISUB = 0
            JSUB = 1
            DO 380 J = 1, N
               DO 370 I = 1, J
                  ISUB = ISUB + 1
                  IF( ISUB.GT.LDA ) THEN
                     ISUB = 1
                     JSUB = JSUB + 1
                  END IF
                  A( ISUB, JSUB ) = SLATM2( M, N, I, J, KL, KU,
     $                              IDIST,
     $                              ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                              IWORK, SPARSE )
  370          CONTINUE
  380       CONTINUE
*
         ELSE IF( IPACK.EQ.4 ) THEN
*
            IF( ISYM.EQ.0 ) THEN
               DO 400 J = 1, N
                  DO 390 I = 1, J
*
*                    Compute K = location of (I,J) entry in packed array
*
                     IF( I.EQ.1 ) THEN
                        K = J
                     ELSE
                        K = N*( N+1 ) / 2 - ( N-I+1 )*( N-I+2 ) / 2 +
     $                      J - I + 1
                     END IF
*
*                    Convert K to (ISUB,JSUB) location
*
                     JSUB = ( K-1 ) / LDA + 1
                     ISUB = K - LDA*( JSUB-1 )
*
                     A( ISUB, JSUB ) = SLATM2( M, N, I, J, KL, KU,
     $                                 IDIST, ISEED, D, IGRADE, DL, DR,
     $                                 IPVTNG, IWORK, SPARSE )
  390             CONTINUE
  400          CONTINUE
            ELSE
               ISUB = 0
               JSUB = 1
               DO 420 J = 1, N
                  DO 410 I = J, M
                     ISUB = ISUB + 1
                     IF( ISUB.GT.LDA ) THEN
                        ISUB = 1
                        JSUB = JSUB + 1
                     END IF
                     A( ISUB, JSUB ) = SLATM2( M, N, I, J, KL, KU,
     $                                 IDIST, ISEED, D, IGRADE, DL, DR,
     $                                 IPVTNG, IWORK, SPARSE )
  410             CONTINUE
  420          CONTINUE
            END IF
*
         ELSE IF( IPACK.EQ.5 ) THEN
*
            DO 440 J = 1, N
               DO 430 I = J - KUU, J
                  IF( I.LT.1 ) THEN
                     A( J-I+1, I+N ) = ZERO
                  ELSE
                     A( J-I+1, I ) = SLATM2( M, N, I, J, KL, KU,
     $                               IDIST,
     $                               ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                               IWORK, SPARSE )
                  END IF
  430          CONTINUE
  440       CONTINUE
*
         ELSE IF( IPACK.EQ.6 ) THEN
*
            DO 460 J = 1, N
               DO 450 I = J - KUU, J
                  A( I-J+KUU+1, J ) = SLATM2( M, N, I, J, KL, KU,
     $                                IDIST,
     $                                ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                                IWORK, SPARSE )
  450          CONTINUE
  460       CONTINUE
*
         ELSE IF( IPACK.EQ.7 ) THEN
*
            IF( ISYM.EQ.0 ) THEN
               DO 480 J = 1, N
                  DO 470 I = J - KUU, J
                     A( I-J+KUU+1, J ) = SLATM2( M, N, I, J, KL, KU,
     $                                   IDIST, ISEED, D, IGRADE, DL,
     $                                   DR, IPVTNG, IWORK, SPARSE )
                     IF( I.LT.1 )
     $                  A( J-I+1+KUU, I+N ) = ZERO
                     IF( I.GE.1 .AND. I.NE.J )
     $                  A( J-I+1+KUU, I ) = A( I-J+KUU+1, J )
  470             CONTINUE
  480          CONTINUE
            ELSE IF( ISYM.EQ.1 ) THEN
               DO 500 J = 1, N
                  DO 490 I = J - KUU, J + KLL
                     A( I-J+KUU+1, J ) = SLATM2( M, N, I, J, KL, KU,
     $                                   IDIST, ISEED, D, IGRADE, DL,
     $                                   DR, IPVTNG, IWORK, SPARSE )
  490             CONTINUE
  500          CONTINUE
            END IF
*
         END IF
*
      END IF
*
*     5)      Scaling the norm
*
      IF( IPACK.EQ.0 ) THEN
         ONORM = SLANGE( 'M', M, N, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.1 ) THEN
         ONORM = SLANSY( 'M', 'U', N, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.2 ) THEN
         ONORM = SLANSY( 'M', 'L', N, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.3 ) THEN
         ONORM = SLANSP( 'M', 'U', N, A, TEMPA )
      ELSE IF( IPACK.EQ.4 ) THEN
         ONORM = SLANSP( 'M', 'L', N, A, TEMPA )
      ELSE IF( IPACK.EQ.5 ) THEN
         ONORM = SLANSB( 'M', 'L', N, KLL, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.6 ) THEN
         ONORM = SLANSB( 'M', 'U', N, KUU, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.7 ) THEN
         ONORM = SLANGB( 'M', N, KLL, KUU, A, LDA, TEMPA )
      END IF
*
      IF( ANORM.GE.ZERO ) THEN
*
         IF( ANORM.GT.ZERO .AND. ONORM.EQ.ZERO ) THEN
*
*           Desired scaling impossible
*
            INFO = 5
            RETURN
*
         ELSE IF( ( ANORM.GT.ONE .AND. ONORM.LT.ONE ) .OR.
     $            ( ANORM.LT.ONE .AND. ONORM.GT.ONE ) ) THEN
*
*           Scale carefully to avoid over / underflow
*
            IF( IPACK.LE.2 ) THEN
               DO 510 J = 1, N
                  CALL SSCAL( M, ONE / ONORM, A( 1, J ), 1 )
                  CALL SSCAL( M, ANORM, A( 1, J ), 1 )
  510          CONTINUE
*
            ELSE IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
*
               CALL SSCAL( N*( N+1 ) / 2, ONE / ONORM, A, 1 )
               CALL SSCAL( N*( N+1 ) / 2, ANORM, A, 1 )
*
            ELSE IF( IPACK.GE.5 ) THEN
*
               DO 520 J = 1, N
                  CALL SSCAL( KLL+KUU+1, ONE / ONORM, A( 1, J ), 1 )
                  CALL SSCAL( KLL+KUU+1, ANORM, A( 1, J ), 1 )
  520          CONTINUE
*
            END IF
*
         ELSE
*
*           Scale straightforwardly
*
            IF( IPACK.LE.2 ) THEN
               DO 530 J = 1, N
                  CALL SSCAL( M, ANORM / ONORM, A( 1, J ), 1 )
  530          CONTINUE
*
            ELSE IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
*
               CALL SSCAL( N*( N+1 ) / 2, ANORM / ONORM, A, 1 )
*
            ELSE IF( IPACK.GE.5 ) THEN
*
               DO 540 J = 1, N
                  CALL SSCAL( KLL+KUU+1, ANORM / ONORM, A( 1, J ), 1 )
  540          CONTINUE
            END IF
*
         END IF
*
      END IF
*
*     End of SLATMR
*
      END