numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/MATGEN/zlagge.f | 11102B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
*> \brief \b ZLAGGE * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, KL, KU, LDA, M, N * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * DOUBLE PRECISION D( * ) * COMPLEX*16 A( LDA, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLAGGE generates a complex general m by n matrix A, by pre- and post- *> multiplying a real diagonal matrix D with random unitary matrices: *> A = U*D*V. The lower and upper bandwidths may then be reduced to *> kl and ku by additional unitary transformations. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> The number of nonzero subdiagonals within the band of A. *> 0 <= KL <= M-1. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> The number of nonzero superdiagonals within the band of A. *> 0 <= KU <= N-1. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (min(M,N)) *> The diagonal elements of the diagonal matrix D. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The generated m by n matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= M. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry, the seed of the random number generator; the array *> elements must be between 0 and 4095, and ISEED(4) must be *> odd. *> On exit, the seed is updated. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (M+N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_matgen * * ===================================================================== SUBROUTINE ZLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, KL, KU, LDA, M, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION D( * ) COMPLEX*16 A( LDA, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ), $ ONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION WN COMPLEX*16 TAU, WA, WB * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEMV, ZGERC, ZLACGV, ZLARNV, ZSCAL * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. External Functions .. DOUBLE PRECISION DZNRM2 EXTERNAL DZNRM2 * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN INFO = -3 ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -7 END IF IF( INFO.LT.0 ) THEN CALL XERBLA( 'ZLAGGE', -INFO ) RETURN END IF * * initialize A to diagonal matrix * DO 20 J = 1, N DO 10 I = 1, M A( I, J ) = ZERO 10 CONTINUE 20 CONTINUE DO 30 I = 1, MIN( M, N ) A( I, I ) = D( I ) 30 CONTINUE * * Quick exit if the user wants a diagonal matrix * IF(( KL .EQ. 0 ).AND.( KU .EQ. 0)) RETURN * * pre- and post-multiply A by random unitary matrices * DO 40 I = MIN( M, N ), 1, -1 IF( I.LT.M ) THEN * * generate random reflection * CALL ZLARNV( 3, ISEED, M-I+1, WORK ) WN = DZNRM2( M-I+1, WORK, 1 ) WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = WORK( 1 ) + WA CALL ZSCAL( M-I, ONE / WB, WORK( 2 ), 1 ) WORK( 1 ) = ONE TAU = DBLE( WB / WA ) END IF * * multiply A(i:m,i:n) by random reflection from the left * CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I+1, ONE, $ A( I, I ), LDA, WORK, 1, ZERO, WORK( M+1 ), 1 ) CALL ZGERC( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1, $ A( I, I ), LDA ) END IF IF( I.LT.N ) THEN * * generate random reflection * CALL ZLARNV( 3, ISEED, N-I+1, WORK ) WN = DZNRM2( N-I+1, WORK, 1 ) WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = WORK( 1 ) + WA CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 ) WORK( 1 ) = ONE TAU = DBLE( WB / WA ) END IF * * multiply A(i:m,i:n) by random reflection from the right * CALL ZGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ), $ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 ) CALL ZGERC( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1, $ A( I, I ), LDA ) END IF 40 CONTINUE * * Reduce number of subdiagonals to KL and number of superdiagonals * to KU * DO 70 I = 1, MAX( M-1-KL, N-1-KU ) IF( KL.LE.KU ) THEN * * annihilate subdiagonal elements first (necessary if KL = 0) * IF( I.LE.MIN( M-1-KL, N ) ) THEN * * generate reflection to annihilate A(kl+i+1:m,i) * WN = DZNRM2( M-KL-I+1, A( KL+I, I ), 1 ) WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( KL+I, I ) + WA CALL ZSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 ) A( KL+I, I ) = ONE TAU = DBLE( WB / WA ) END IF * * apply reflection to A(kl+i:m,i+1:n) from the left * CALL ZGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE, $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO, $ WORK, 1 ) CALL ZGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK, $ 1, A( KL+I, I+1 ), LDA ) A( KL+I, I ) = -WA END IF * IF( I.LE.MIN( N-1-KU, M ) ) THEN * * generate reflection to annihilate A(i,ku+i+1:n) * WN = DZNRM2( N-KU-I+1, A( I, KU+I ), LDA ) WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( I, KU+I ) + WA CALL ZSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA ) A( I, KU+I ) = ONE TAU = DBLE( WB / WA ) END IF * * apply reflection to A(i+1:m,ku+i:n) from the right * CALL ZLACGV( N-KU-I+1, A( I, KU+I ), LDA ) CALL ZGEMV( 'No transpose', M-I, N-KU-I+1, ONE, $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO, $ WORK, 1 ) CALL ZGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ), $ LDA, A( I+1, KU+I ), LDA ) A( I, KU+I ) = -WA END IF ELSE * * annihilate superdiagonal elements first (necessary if * KU = 0) * IF( I.LE.MIN( N-1-KU, M ) ) THEN * * generate reflection to annihilate A(i,ku+i+1:n) * WN = DZNRM2( N-KU-I+1, A( I, KU+I ), LDA ) WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( I, KU+I ) + WA CALL ZSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA ) A( I, KU+I ) = ONE TAU = DBLE( WB / WA ) END IF * * apply reflection to A(i+1:m,ku+i:n) from the right * CALL ZLACGV( N-KU-I+1, A( I, KU+I ), LDA ) CALL ZGEMV( 'No transpose', M-I, N-KU-I+1, ONE, $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO, $ WORK, 1 ) CALL ZGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ), $ LDA, A( I+1, KU+I ), LDA ) A( I, KU+I ) = -WA END IF * IF( I.LE.MIN( M-1-KL, N ) ) THEN * * generate reflection to annihilate A(kl+i+1:m,i) * WN = DZNRM2( M-KL-I+1, A( KL+I, I ), 1 ) WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( KL+I, I ) + WA CALL ZSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 ) A( KL+I, I ) = ONE TAU = DBLE( WB / WA ) END IF * * apply reflection to A(kl+i:m,i+1:n) from the left * CALL ZGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE, $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO, $ WORK, 1 ) CALL ZGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK, $ 1, A( KL+I, I+1 ), LDA ) A( KL+I, I ) = -WA END IF END IF * IF (I .LE. N) THEN DO 50 J = KL + I + 1, M A( J, I ) = ZERO 50 CONTINUE END IF * IF (I .LE. M) THEN DO 60 J = KU + I + 1, N A( I, J ) = ZERO 60 CONTINUE END IF 70 CONTINUE RETURN * * End of ZLAGGE * END