numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/TESTING/MATGEN/zlagsy.f | 7892B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
*> \brief \b ZLAGSY * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZLAGSY( N, K, D, A, LDA, ISEED, WORK, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, K, LDA, N * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * DOUBLE PRECISION D( * ) * COMPLEX*16 A( LDA, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLAGSY generates a complex symmetric matrix A, by pre- and post- *> multiplying a real diagonal matrix D with a random unitary matrix: *> A = U*D*U**T. The semi-bandwidth may then be reduced to k by *> additional unitary transformations. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The number of nonzero subdiagonals within the band of A. *> 0 <= K <= N-1. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (N) *> The diagonal elements of the diagonal matrix D. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The generated n by n symmetric matrix A (the full matrix is *> stored). *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= N. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry, the seed of the random number generator; the array *> elements must be between 0 and 4095, and ISEED(4) must be *> odd. *> On exit, the seed is updated. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (2*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_matgen * * ===================================================================== SUBROUTINE ZLAGSY( N, K, D, A, LDA, ISEED, WORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, K, LDA, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION D( * ) COMPLEX*16 A( LDA, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 ZERO, ONE, HALF PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ), $ ONE = ( 1.0D+0, 0.0D+0 ), $ HALF = ( 0.5D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, II, J, JJ DOUBLE PRECISION WN COMPLEX*16 ALPHA, TAU, WA, WB * .. * .. External Subroutines .. EXTERNAL XERBLA, ZAXPY, ZGEMV, ZGERC, ZLACGV, ZLARNV, $ ZSCAL, ZSYMV * .. * .. External Functions .. DOUBLE PRECISION DZNRM2 COMPLEX*16 ZDOTC EXTERNAL DZNRM2, ZDOTC * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( N.LT.0 ) THEN INFO = -1 ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 END IF IF( INFO.LT.0 ) THEN CALL XERBLA( 'ZLAGSY', -INFO ) RETURN END IF * * initialize lower triangle of A to diagonal matrix * DO 20 J = 1, N DO 10 I = J + 1, N A( I, J ) = ZERO 10 CONTINUE 20 CONTINUE DO 30 I = 1, N A( I, I ) = D( I ) 30 CONTINUE * * Generate lower triangle of symmetric matrix * DO 60 I = N - 1, 1, -1 * * generate random reflection * CALL ZLARNV( 3, ISEED, N-I+1, WORK ) WN = DZNRM2( N-I+1, WORK, 1 ) WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = WORK( 1 ) + WA CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 ) WORK( 1 ) = ONE TAU = DBLE( WB / WA ) END IF * * apply random reflection to A(i:n,i:n) from the left * and the right * * compute y := tau * A * conjg(u) * CALL ZLACGV( N-I+1, WORK, 1 ) CALL ZSYMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO, $ WORK( N+1 ), 1 ) CALL ZLACGV( N-I+1, WORK, 1 ) * * compute v := y - 1/2 * tau * ( u, y ) * u * ALPHA = -HALF*TAU*ZDOTC( N-I+1, WORK, 1, WORK( N+1 ), 1 ) CALL ZAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 ) * * apply the transformation as a rank-2 update to A(i:n,i:n) * * CALL ZSYR2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1, * $ A( I, I ), LDA ) * DO 50 JJ = I, N DO 40 II = JJ, N A( II, JJ ) = A( II, JJ ) - $ WORK( II-I+1 )*WORK( N+JJ-I+1 ) - $ WORK( N+II-I+1 )*WORK( JJ-I+1 ) 40 CONTINUE 50 CONTINUE 60 CONTINUE * * Reduce number of subdiagonals to K * DO 100 I = 1, N - 1 - K * * generate reflection to annihilate A(k+i+1:n,i) * WN = DZNRM2( N-K-I+1, A( K+I, I ), 1 ) WA = ( WN / ABS( A( K+I, I ) ) )*A( K+I, I ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( K+I, I ) + WA CALL ZSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 ) A( K+I, I ) = ONE TAU = DBLE( WB / WA ) END IF * * apply reflection to A(k+i:n,i+1:k+i-1) from the left * CALL ZGEMV( 'Conjugate transpose', N-K-I+1, K-1, ONE, $ A( K+I, I+1 ), LDA, A( K+I, I ), 1, ZERO, WORK, 1 ) CALL ZGERC( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1, $ A( K+I, I+1 ), LDA ) * * apply reflection to A(k+i:n,k+i:n) from the left and the right * * compute y := tau * A * conjg(u) * CALL ZLACGV( N-K-I+1, A( K+I, I ), 1 ) CALL ZSYMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA, $ A( K+I, I ), 1, ZERO, WORK, 1 ) CALL ZLACGV( N-K-I+1, A( K+I, I ), 1 ) * * compute v := y - 1/2 * tau * ( u, y ) * u * ALPHA = -HALF*TAU*ZDOTC( N-K-I+1, A( K+I, I ), 1, WORK, 1 ) CALL ZAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 ) * * apply symmetric rank-2 update to A(k+i:n,k+i:n) * * CALL ZSYR2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1, * $ A( K+I, K+I ), LDA ) * DO 80 JJ = K + I, N DO 70 II = JJ, N A( II, JJ ) = A( II, JJ ) - A( II, I )*WORK( JJ-K-I+1 ) - $ WORK( II-K-I+1 )*A( JJ, I ) 70 CONTINUE 80 CONTINUE * A( K+I, I ) = -WA DO 90 J = K + I + 1, N A( J, I ) = ZERO 90 CONTINUE 100 CONTINUE * * Store full symmetric matrix * DO 120 J = 1, N DO 110 I = J + 1, N A( J, I ) = A( I, J ) 110 CONTINUE 120 CONTINUE RETURN * * End of ZLAGSY * END