- Commit
- 3d4399e3281927e1c7e0d1eb032d9999dbb08032
- Parent
- 65997002a79d315ef06ddc62d9d419b596942ca0
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed a typo
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Fixed a typo
1 file changed, 1 insertion, 1 deletion
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/applications.tex | 2 | 1 | 1 |
diff --git a/sections/applications.tex b/sections/applications.tex @@ -38,7 +38,7 @@ point. Without further ado, we prove\dots \begin{align*} E : H^1(I, M) & \to \mathbb{R} \\ \gamma - & \mapsto \frac{1}{2} \norm{\partial \gamma}_0 + & \mapsto \frac{1}{2} \norm{\partial \gamma}_0^2 = \frac{1}{2} \int_0^1 \norm{\dot\gamma(t)}^2 \; \dt \end{align*} is smooth and \(d E_\gamma X = \left\langle \partial \gamma, \frac\nabla\dt X