lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
02ff7321bcae84e4056fc4e8f275d8b6c9c94b56
Parent
d2c1e21e268cd01331407b312ab6f851c8340753
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a TODO item

Diffstat

1 file changed, 4 insertions, 5 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/semisimple-algebras.tex 9 4 5
diff --git a/sections/semisimple-algebras.tex b/sections/semisimple-algebras.tex
@@ -792,8 +792,6 @@ Moreover, we find\dots
   \end{align*}
 
   In the language of the diagrams used in chapter~\ref{ch:sl3}, we write
-  % TODO: Add a label to the righ of the diagram indicating that the top arrows
-  % are the action of e and the bottom arrows are the action of f
   \begin{center}
     \begin{tikzcd}
       \cdots \arrow[bend left=60]{r}{-10}
@@ -804,9 +802,10 @@ Moreover, we find\dots
       & M(\lambda)_2    \arrow[bend left=60]{l}{1}
     \end{tikzcd}
   \end{center}
-  where \(M(\lambda)_{2 - 2 k} = K f^k v\). In this case, unlike we have see in
-  chapter~\ref{ch:sl3}, the string of weight spaces to left of the diagram is
-  infinite.
+  where \(M(\lambda)_{2 - 2 k} = K f^k v\). Here the top arrows represent the
+  action of \(e\) and the bottom arrows represent the action of \(f\). In this
+  case, unlike we have see in chapter~\ref{ch:sl3}, the string of weight spaces
+  to left of the diagram is infinite.
 \end{example}
 
 What's interesting to us about all this is that we've just constructed a