lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
0e9e90d3184b316030d36c55a56c44e8a6985ee3
Parent
6b76e44e70922a10e47a2f37fb78f1a709bb829f
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a typo

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/fin-dim-simple.tex 2 1 1
diff --git a/sections/fin-dim-simple.tex b/sections/fin-dim-simple.tex
@@ -353,7 +353,7 @@ of the Killing form to the Cartan subalgebra.
   \mathfrak{g}_{\alpha + \beta}\). Indeed, if \(X \in \mathfrak{g}_\alpha\) and
   \(Y \in \mathfrak{g}_\beta\) then
   \[
-    [H [X, Y]]
+    [H, [X, Y]]
     = [X, [H, Y]] - [Y, [H, X]]
     = (\alpha + \beta)(H) \cdot [X, Y]
   \]