- Commit
- 12b23db03fe06c0261d967a8a2422e31a9cf9412
- Parent
- 463b70793fe3e85efcbe96c817e475c6f6d7ddf3
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed a typo
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed a typo
1 file changed, 3 insertions, 4 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 7 | 3 | 4 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -279,7 +279,7 @@ \begin{corollary} Let \(\Sigma\) be as in lemma~\ref{thm:nice-basis-for-inversion} and \((F_\alpha : \alpha \in \Sigma) \subset \mathcal{U}(\mathfrak{g})\) be - the multiplicative subset generated by \(F_\alpha\), \(\alpha \in F_\alpha\). + the multiplicative subset generated by \(F_\alpha\), \(\alpha \in \Sigma\). The \(K\)-algebra \(\mathcal{U}(\mathfrak{g})_{(F_\alpha : \alpha \in \Sigma)}\) is well defined and the localization map \begin{align*} @@ -341,6 +341,7 @@ \(\operatorname{Ext}(V)\) is irreducible as a coherent family. \end{theorem} +% TODOOO: Prove the uniqueness \begin{proof} The existence part should now be clear from the previous discussion: let \(\Lambda\) be a set of representatives of the \(Q\)-cosets in @@ -381,7 +382,7 @@ \subset \operatorname{Ext}(V) \] - % TODOO: Prove that the weight spaces of any simple g-module are all simple + % TODOOO: Prove that the weight spaces of any simple g-module are all simple % C(h)-modules Since the degree of \(V\) is the same as the degree of \(\operatorname{Ext}(V)\), some of its weight spaces have maximal dimension @@ -390,8 +391,6 @@ a simple \(C_{\mathcal{U}(\mathfrak{h})}(\mathfrak{h})\)-module for some \(\lambda \in \operatorname{supp} V\), so that \(\operatorname{Ext}(V)\) is irreducible as a coherent family. - - % TODOO: Prove the uniqueness \end{proof} \begin{proposition}[Mathieu]