- Commit
- 1dbcc654c5fc0b8868792f0f00e56f5db5ec8ec4
- Parent
- 7179f4432b3238fb409deb2a13ecfc60638d713a
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Started to work on the chapter about Mathieu's paper
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Started to work on the chapter about Mathieu's paper
3 files changed, 168 insertions, 2 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Added | sections/mathieu.tex | 164 | 164 | 0 |
Modified | sections/semisimple-algebras.tex | 4 | 2 | 2 |
Modified | tcc.tex | 2 | 2 | 0 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -0,0 +1,164 @@ +\chapter{Irreducible Weight Modules} + +\begin{definition} + A representation \(V\) of \(\mathfrak{g}\) is called a \emph{weight + \(\mathfrak{g}\)-module} if \(V = \bigoplus_{\lambda \in \mathfrak{h}^*} + V_\lambda\) and \(\dim V_\lambda < \infty\) for all \(\lambda \in + \mathfrak{h}^*\). The \emph{support of \(V\)} is the set + \(\operatorname{supp} V = \{\lambda \in \mathfrak{h}^* : V_\lambda \ne 0\}\). +\end{definition} + +\begin{definition} + A weight \(\mathfrak{g}\)-module is called + \emph{an admissible} if \(\dim V_\lambda\) is bounded. The lowest upper bound + for \(\dim V_\lambda\) is called \emph{the degree of \(V\)}. +\end{definition} + +\begin{example} + Corollary~\ref{thm:finite-dim-is-weight-mod} is equivalent to the fact that + every finite-dimensional \(\mathfrak{g}\)-module is a weight module. +\end{example} + +% TODO: Is every quotient of a weight module a weight module too? +\begin{example} + Proposition~\ref{thm:verma-is-weight-mod} and + proposition~\ref{thm:max-verma-submod-is-weight} imply that the Verma module + \(M(\lambda)\) and its maximal subrepresentation are both weight modules. In + fact, the proof of proposition~\ref{thm:max-verma-submod-is-weight} is + actually a proof of the fact that every subrepresentation of a weight module + is a weight module. +\end{example} + +\begin{definition} + A subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) is called \emph{parabolic} + if \(\mathfrak{b} \subset \mathfrak{p}\). +\end{definition} + +% TODO: Comment afterwords that the Verma modules are indeed generalized Verma +% modules +\begin{definition} + Given a parabolic subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) and a + \(\mathfrak{p}\)-module \(V\) the module \(M_{\mathfrak{p}}(V) = + \operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} V\) is called \emph{a + generalized Verma module}. +\end{definition} + +\begin{proposition} + Given an irreducible \(\mathfrak{p}\)-module \(V\), the generalized Verma + module \(M_{\mathfrak{p}}(V)\) has a unique maximal subrepresentation + \(N_{\mathfrak{p}}(V)\) and a unique irreducible quotient + \(L_{\mathfrak{p}}(V) = \mfrac{M_{\mathfrak{p}}(V)}{N_{\mathfrak{p}}(V)}\). + The irreducible quotient \(L_{\mathfrak{p}}(V)\) is a weight module. +\end{proposition} + +\begin{definition} + An irreducible \(\mathfrak{g}\)-module is called \emph{parabolic induced} if + it is isomorphic to \(L_{\mathfrak{p}}(V)\) for some proper parabolic + subalgebra \(\mathfrak{p} \subsetneq \mathfrak{g}\) and some + \(\mathfrak{p}\)-module \(V\). An \emph{irreducible cuspidal + \(\mathfrak{g}\)-module} is an irreducible representation of \(\mathfrak{g}\) + which is \emph{not} parabolic induced. +\end{definition} + +% TODO: Remark on the fact that any simple weight p-mod is a (p/u)-mod, so that +% the notation of a cuspidal p-mod is well definited +% TODO: Define the conjugation of a p-mod by an element of the Weil group +\begin{theorem}[Fernando] + Any irreducible weight \(\mathfrak{g}\)-module is isomorphic to + \(L_{\mathfrak{p}}(V)\) for some parabolic subalgebra \(\mathfrak{p} \subset + \mathfrak{g}\) and some irreducible cuspital \(\mathfrak{p}\)-module \(V\). + Furthermore, if \(\mathfrak{p}_1, \mathfrak{p}_2 \subset \mathfrak{g}\) are + parabolic and \(V_i\) is an irreducible cuspidal \(\mathfrak{p}_i\)-module + then \(L_{\mathfrak{p}_1}(V_1) \cong L_{\mathfrak{p}_2}(V_2)\) if, and only + if \(\mathfrak{p}_1 = \mathfrak{p}_2^w\) and \(V_1 \cong V_2^w\) for some \(w + \in W\). +\end{theorem} + +% TODO: Remark that the support of a simple weight module is always contained +% in a coset +% TODO: Note that conditions (ii) and (iii) have special names +\begin{corollary}[Fernando] + Let \(V\) be an irreducible weight \(\mathfrak{g}\)-module. The following + conditions are equivalent. + \begin{enumerate} + \item \(V\) is cuspidal. + \item \(E_\alpha\) acts injectively in \(V\) for all \(\alpha \in \Delta\). + \item The support of \(V\) is precisely one \(Q\)-coset. + \end{enumerate} +\end{corollary} + +\begin{proposition} + If \(\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{s}_1 \oplus \cdots \oplus + \mathfrak{s}_n\), where \(\mathfrak{z}\) is the center of \(\mathfrak{g}\) + and \(\mathfrak{s}_i\) is a simple component of \(\mathfrak{g}\), then any + irreducible weight \(\mathfrak{g}\)-module \(V\) decomposes as + \[ + V = Z \otimes V_1 \otimes \cdots \otimes V_n + \] + where \(Z\) is a 1-dimensional representation of \(\mathfrak{z}\) and \(V_i\) + is an irreducible weight \(\mathfrak{s}_i\)-module. +\end{proposition} + +\begin{definition} + A \emph{coherent family \(\mathcal{M}\) of degree \(d\)} is a weight + \(\mathfrak{g}\)-module \(\mathcal{M}\) such that + \begin{enumerate} + \item \(\dim \mathcal{M}_\lambda = d\) for \emph{all} \(\lambda \in + \mathfrak{h}^*\) + \item For any \(u \in \mathcal{U}(\mathfrak{g})\) in the centralizer + \(C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\) of \(\mathfrak{h}\) in + \(\mathcal{U}(\mathfrak{g})\), the map + \begin{align*} + \mathfrak{h}^* & \to K \\ + \lambda & \mapsto + \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\lambda}) + \end{align*} + is polynomial in \(\lambda\). + \end{enumerate} +\end{definition} + +\begin{definition} + A coherent family \(\mathcal{M}\) called \emph{irreducible} if + \(\mathcal{M}_\lambda\) is a simple + \(C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\)-module for each \(\lambda \in + \mathfrak{h}^*\). +\end{definition} + +\begin{definition} + Given a representation \(V\) of \(\mathfrak{g}\), a coherent extension + \(\mathcal{M}\) of \(V\) is a coherent family \(\mathcal{M}\) that contains + \(V\) as a subquotient. +\end{definition} + +% TODO: Define the semisimplification of a coherent family +\begin{theorem}[Mathieu] + Let \(V\) be an infinite-dimensional admissible irreducible + \(\mathfrak{g}\)-module of degree \(d\). There exists a unique semisimple + cohorent extension \(\operatorname{Ext}(V)\) of \(V\). The central characters + of the irreducible submodules of \(\operatorname{Ext}(V)\) are all the same. + Furthermore, if \(\mathcal{M}\) is any coherent extension of \(V\), then + \(\mathcal{M}^{\operatorname{ss}} \cong \operatorname{Ext}(V)\). +\end{theorem} + +% TODO: Add a proof! +% TODO: V is a submodule because of the definition of the semisimplification +% TODO: All weights in the coset occur because V is cuspidal +% TODO: The dimension of the weight spaces of V is maximal because Ext is +% an irreducible coherent family +% TODO: Define the notation for M[mu] somewhere else +\begin{proposition} + Let \(V\) be a cuspidal representation of \(\mathfrak{g}\) and take any + weight \(\lambda\) of \(V\). Then \(V \cong + (\operatorname{Ext}(V))[\lambda]\). +\end{proposition} + +\begin{theorem}[Mathieu] + Let \(\mathcal{M}\) be an irreducible coherent family and \(\mu \in + \mathfrak{h}^*\). The following conditions are equivalent. + \begin{enumerate} + \item \(\mathcal{M}[\mu]\) is irreducible. + \item \(F_\alpha\!\restriction_{\mathcal{M}[\mu]}\) is injective for all + \(\alpha \in \Delta\). + \item \(\mathcal{M}[\mu]\) is cuspidal. + \end{enumerate} +\end{theorem}
diff --git a/sections/semisimple-algebras.tex b/sections/semisimple-algebras.tex @@ -1859,7 +1859,7 @@ What is simultaneous diagonalization all about then? its elements commute with one another. \end{proposition} -\begin{corollary} +\begin{corollary}\label{thm:finite-dim-is-weight-mod} Let \(\mathfrak{g}\) be a Lie algebra, \(\mathfrak{h} \subset \mathfrak{g}\) be an Abelian subalgebra and \(V\) be any finite-dimensional representation of \(\mathfrak{g}\). Then there is a basis \(\{v_1, \ldots, v_n\}\) of \(V\) @@ -2316,7 +2316,7 @@ is neither irreducible nor finite-dimensional. Nevertheless, we can use whose highest weight is \(\lambda\). % TODO: Adjust the notation for the maximal submodule -\begin{proposition} +\begin{proposition}\label{thm:max-verma-submod-is-weight} Every subrepresentation \(V \subset M(\lambda)\) is the direct sum of its weight spaces. In particular, \(M(\lambda)\) has a unique maximal subrepresentation \(N(\lambda)\) and a unique irreducible quotient
diff --git a/tcc.tex b/tcc.tex @@ -24,6 +24,8 @@ \input{sections/semisimple-algebras} +\input{sections/mathieu} + \printbibliography \end{document}