- Commit
- 23770f04ed7d493e5fbdfd859e0559b7da99eaea
- Parent
- 2b67d333d15cd6c9adb0e4d5ef45d3f69757bf82
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Finished the proof of a technical lemma
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Finished the proof of a technical lemma
1 file changed, 10 insertions, 11 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 21 | 10 | 11 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -374,13 +374,15 @@ \(K\)-linear operator \(\mathcal{M}_\lambda \to \mathcal{M}_\lambda\), so that \(W = 0\) or \(W = \mathcal{M}_\lambda\). - % TODOOO: Show this - On the other hand, if \(\mathcal{M}_\lambda\) is simple then we can find - \(u_1, \ldots, u_{d^2} \in \mathcal{U}(\mathfrak{g})_0\) with - \(B_\lambda(u_1, \cdot), \ldots, B_\lambda(u_{d^2}, \cdot) \in - \mathcal{U}(\mathfrak{g})_0^*\) linearly independent. In other words, if - \(\mathcal{M}_\lambda\) is simple then \(\operatorname{rank} B_\lambda \ge - d^2\). Hence \(U\) is precisely the set of \(\lambda\) such that + On the other hand, if \(\mathcal{M}_\lambda\) is simple then by Jacobson's + density theorem the map \(\mathcal{U}(\mathfrak{g})_0 \to + \operatorname{End}(\mathcal{M}_\lambda)\) is surjective. Hence the + commutativity of the previously drawn diagram, as well as the fact that + \(\operatorname{rank}(\mathcal{U}(\mathfrak{g})_0 \to + \operatorname{End}(\mathcal{M}_\lambda)) = + \operatorname{rank}(\operatorname{End}(\mathcal{M}_\lambda)^* \to + \mathcal{U}(\mathfrak{g})_0^*)\), imply that \(\operatorname{rank} B_\lambda + = d^2\). Hence \(U\) is precisely the set of \(\lambda\) such that \(B_\lambda\) has maximal rank \(d^2\). We now show that \(U\) is Zariski-open. First, notice that \[ @@ -404,10 +406,7 @@ \operatorname{End}(\mathcal{M}_\lambda)^* \arrow{u} \end{tikzcd} \end{center} - and the fact that \(\operatorname{rank}(W \to - \operatorname{End}(\mathcal{M}_\lambda)) = - \operatorname{rank}(\operatorname{End}(\mathcal{M}_\lambda)^* \to W^*)\) - then imply \(\operatorname{rank} B_\lambda\!\restriction_W = d^2\). In + then implies \(\operatorname{rank} B_\lambda\!\restriction_W = d^2\). In other words, \(U \subset \bigcup_W U_W\). Likewise, if \(\operatorname{rank} B_\lambda\!\restriction_W = d^2\) for some