lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
262948b5117fff49dff676be7289b3693cc87207
Parent
d420135863e0d433367ec53178d01c15a4ea460b
Author
Pablo <pablo-escobar@riseup.net>
Date

Removed unnecessary whitespace

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/mathieu.tex 2 1 1
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -94,7 +94,7 @@
   If \(\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{s}_1 \oplus \cdots \oplus
   \mathfrak{s}_n\), where \(\mathfrak{z}\) is the center of \(\mathfrak{g}\)
   and \(\mathfrak{s}_i\) is a simple component of \(\mathfrak{g}\), then any
-  irreducible weight \(\mathfrak{g}\)-module \(V\) decomposes as 
+  irreducible weight \(\mathfrak{g}\)-module \(V\) decomposes as
   \[
     V = Z \otimes V_1 \otimes \cdots \otimes V_n
   \]