lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
318630c4936a7f25e0fc287ea98505f31dc2b5c7
Parent
5c42a67d6ce239c71eed29d84038a5caad081124
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a typo

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/mathieu.tex 2 1 1
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -79,7 +79,7 @@ to the case it holds. This brings us to the following definition.
 
 \begin{example}\label{ex:quotient-is-weight-mod}
   Given a weight module \(M\), a submodule \(N \subset M\) and \(\lambda \in
-  \mathfrak{h}^*\), it is clear that \(= \mfrac{M_\lambda}{N} \subset
+  \mathfrak{h}^*\), it is clear that \(\mfrac{M_\lambda}{N} \subset
   \left(\mfrac{M}{N}\right)_\lambda\). In addition, \(\mfrac{M}{N} =
   \bigoplus_{\lambda \in \mathfrak{h}^*} \mfrac{M_\lambda}{N}\). Hence
   \(\mfrac{M}{N}\) is weight \(\mathfrak{g}\)-module with