- Commit
- 318630c4936a7f25e0fc287ea98505f31dc2b5c7
- Parent
- 5c42a67d6ce239c71eed29d84038a5caad081124
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed a typo
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed a typo
1 file changed, 1 insertion, 1 deletion
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 2 | 1 | 1 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -79,7 +79,7 @@ to the case it holds. This brings us to the following definition. \begin{example}\label{ex:quotient-is-weight-mod} Given a weight module \(M\), a submodule \(N \subset M\) and \(\lambda \in - \mathfrak{h}^*\), it is clear that \(= \mfrac{M_\lambda}{N} \subset + \mathfrak{h}^*\), it is clear that \(\mfrac{M_\lambda}{N} \subset \left(\mfrac{M}{N}\right)_\lambda\). In addition, \(\mfrac{M}{N} = \bigoplus_{\lambda \in \mathfrak{h}^*} \mfrac{M_\lambda}{N}\). Hence \(\mfrac{M}{N}\) is weight \(\mathfrak{g}\)-module with