lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
382c22ef3d6a4f500a5f1ac35feaebbd5b1fa8d9
Parent
c3b67b1aa89f55a2ca891389ae7e23569d9dc099
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a typo

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/mathieu.tex 2 1 1
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -1328,7 +1328,7 @@ It should now be obvious\dots
 
 Lo and behold\dots
 
-\begin{theorem}[Mathieu]\index{coherent family!Mathieu's \(\mExt\) coehrent extension}
+\begin{theorem}[Mathieu]\index{coherent family!Mathieu's \(\mExt\) coherent extension}
   There exists a unique semisimple coherent extension \(\mExt(M)\) of \(M\).
   More precisely, if \(\mathcal{M}\) is any coherent extension of \(M\), then
   \(\mathcal{M}^{\operatorname{ss}} \cong \mExt(M)\). Furthermore, \(\mExt(M)\)