- Commit
- 382c22ef3d6a4f500a5f1ac35feaebbd5b1fa8d9
- Parent
- c3b67b1aa89f55a2ca891389ae7e23569d9dc099
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed a typo
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed a typo
1 file changed, 1 insertion, 1 deletion
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 2 | 1 | 1 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -1328,7 +1328,7 @@ It should now be obvious\dots Lo and behold\dots -\begin{theorem}[Mathieu]\index{coherent family!Mathieu's \(\mExt\) coehrent extension} +\begin{theorem}[Mathieu]\index{coherent family!Mathieu's \(\mExt\) coherent extension} There exists a unique semisimple coherent extension \(\mExt(M)\) of \(M\). More precisely, if \(\mathcal{M}\) is any coherent extension of \(M\), then \(\mathcal{M}^{\operatorname{ss}} \cong \mExt(M)\). Furthermore, \(\mExt(M)\)