- Commit
- 391dfe0dd595bd515e2ec712213ac2106300bd98
- Parent
- 0bd82ae0c129ec102c4bc6897bd70b5221169b81
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed a minor error
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed a minor error
1 file changed, 3 insertions, 4 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 7 | 3 | 4 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -488,11 +488,10 @@ \begin{definition} Let \(R\) be a ring. A subset \(S \subset R\) is called \emph{multiplicative} - if \(s \cdot t \in S\) for all \(s, t \in S\) and \(0 \notin S\). - A multiplicative subset \(S\) is said to satisfy \emph{Ore's localization + if \(s \cdot t \in S\) for all \(s, t \in S\) and \(0 \notin S\). A + multiplicative subset \(S\) is said to satisfy \emph{Ore's localization condition} if for each \(r \in R\), \(s \in S\) there exists \(u_1, u_2 \in - R\) and \(t_1, t_2 \in S\) such that \(s^{-1} r = u_1 t_1^{-1}\) and \(r - s^{-1} = t_2^{-1} u_2\). + R\) and \(t_1, t_2 \in S\) such that \(s r = u_1 t_1\) and \(r s = t_2 u_2\). \end{definition} \begin{theorem}[Ore-Asano]