- Commit
- 3ba5201f22bbaa37bad3edeb844c4edaba7f5d13
- Parent
- aebf9810d9f7948924ba3590c3d1562d82cf75aa
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Changed the notation for twisted modules
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Changed the notation for twisted modules
2 files changed, 42 insertions, 42 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | TODO.md | 1 | 0 | 1 |
Modified | sections/mathieu.tex | 83 | 42 | 41 |
diff --git a/TODO.md b/TODO.md @@ -1,5 +1,4 @@ # TODO -* Change the notation for twisted modules * Change the notation for boxtimes * Move proposition 5.39 to the start of the notes?
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -277,10 +277,10 @@ is well understood. Namely, Fernando himself established\dots cuspidal \(\mathfrak{p}\)-module and \(N\) is a simple cuspidal \(\mathfrak{p}'\)-module then \(L_{\mathfrak{p}}(M) \cong L_{\mathfrak{p}'}(N)\) if, and only if \(\mathfrak{p}' = - \mathfrak{p}^\sigma\) and \(M \cong \sigma N\) for some\footnote{Here + \mathfrak{p}^\sigma\) and \(M \cong N^\sigma\) for some\footnote{Here $\mathfrak{p}^\sigma$ denotes the image of $\mathfrak{p}$ under the automorphism of $\sigma : \mathfrak{g} \to \mathfrak{g}$ given by the - canonical action of $W$ on $\mathfrak{g}$ and $\sigma N$ is the + canonical action of $W$ on $\mathfrak{g}$ and $N^\sigma$ is the $\mathfrak{p}$-module given by composing the map $\mathfrak{p}' \to \mathfrak{gl}(N)$ with the restriction $\sigma\!\restriction_{\mathfrak{p}} : \mathfrak{p} \to \mathfrak{p}'$.} \(\sigma \in W_M\), where @@ -289,7 +289,7 @@ is well understood. Namely, Fernando himself established\dots = \langle \sigma_\beta : \beta \in \Sigma, H_\beta + \mathfrak{nil}(\mathfrak{p}) \ \text{is central in}\ \mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})} - \ \text{and}\ H_\beta\ \text{acts as a positive integer in}\ M + \ \text{and}\ H_\beta\ \text{acts on \(M\) as a positive integer} \rangle \subset W \] @@ -366,14 +366,14 @@ automorphisms of \(\operatorname{Diff}(K[x, x^{-1}])\). For example, given \frac{\mathrm{d}}{\mathrm{d} x} & \mapsto \frac{\mathrm{d}}{\mathrm{d} x} + \frac{\lambda}{2} x^{-1} \end{align*} -and consider the module \(\varphi_\lambda K[x, x^{-1}] = K[x, x^{-1}]\) where -some operator \(P \in \operatorname{Diff}(K[x, x^{-1}])\) acts as -\(\varphi_\lambda(P)\). +and consider the twisted module \(K[x, x^{-1}]^{\varphi_\lambda} = K[x, +x^{-1}]\), where some operator \(P \in \operatorname{Diff}(K[x, x^{-1}])\) acts +as \(\varphi_\lambda(P)\). By composing the action map \(\operatorname{Diff}(K[x, x^{-1}]) \to -\operatorname{End}(\varphi_\lambda K[x, x^{-1}])\) with the homomorphism of +\operatorname{End}(K[x, x^{-1}]^{\varphi_\lambda})\) with the homomorphism of algebras \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{Diff}(K[x, -x^{-1}])\) we can give \(\varphi_\lambda K[x, x^{-1}]\) the structure of an +x^{-1}])\) we can give \(K[x, x^{-1}]^{\varphi_\lambda}\) the structure of an \(\mathfrak{sl}_2(K)\)-module. Diagrammatically, we have \begin{center} \begin{tikzcd} @@ -388,7 +388,7 @@ x^{-1}])\) and \(\operatorname{Diff}(K[x, x^{1}]) \to \operatorname{End}(K[x, x^{-1}])\) are the ones from the previous diagram. Explicitly, we find that the action of \(\mathfrak{sl}_2(K)\) on -\(\varphi_\lambda K[x, x^{-1}]\) is given by +\(K[x, x^{-1}]^{\varphi_\lambda}\) is given by \begin{align*} p & \overset{e}{\mapsto} \left( @@ -401,25 +401,25 @@ Explicitly, we find that the action of \(\mathfrak{sl}_2(K)\) on p & \overset{h}{\mapsto} \left( 2 x \frac{\mathrm{d}}{\mathrm{d}x} + \lambda \right) p, \end{align*} -so we can see \((\varphi_\lambda K[x, x^{-1}])_{2 k + \frac{\lambda}{2}} = K -x^k\) for all \(k \in \mathbb{Z}\) and \((\varphi_\lambda K[x, x^{-1}])_\mu = +so we can see \((K[x, x^{-1}]^{\varphi_\lambda})_{2 k + \frac{\lambda}{2}} = K +x^k\) for all \(k \in \mathbb{Z}\) and \((K[x, x^{-1}]^{\varphi_\lambda})_\mu = 0\) for all other \(\mu \in \mathfrak{h}^*\). -Hence \(\varphi_\lambda K[x, x^{-1}]\) is a degree \(1\) admissible -\(\mathfrak{sl}_2(K)\)-module with \(\operatorname{supp} \varphi_\lambda K[x, -x^{-1}] = \frac{\lambda}{2} + 2 \mathbb{Z}\). One can also quickly check that -if \(\lambda \notin 1 + 2 \mathbb{Z}\) then \(e\) and \(f\) act injectively in -\(\varphi_\lambda K[x, x^{-1}]\), so that \(\varphi_\lambda K[x, x^{-1}]\) is -simple. In particular, if \(\lambda, \mu \notin 1 + 2 \mathbb{Z}\) with -\(\lambda \notin \mu + 2 \mathbb{Z}\) then \(\varphi_\lambda K[x, x^{-1}]\) and -\(\varphi_\mu K[x, x^{-1}]\) are non-isomorphic simple cuspidal -\(\mathfrak{sl}_2(K)\)-modules, since their supports differ. These cuspidal -modules can be ``glued together'' in a \emph{monstrous concoction} by -summing over \(\lambda \in K\), as in +Hence \(K[x, x^{-1}]^{\varphi_\lambda}\) is a degree \(1\) admissible +\(\mathfrak{sl}_2(K)\)-module with \(\operatorname{supp} K[x, +x^{-1}]^{\varphi_\lambda} = \frac{\lambda}{2} + 2 \mathbb{Z}\). One can also +quickly check that if \(\lambda \notin 1 + 2 \mathbb{Z}\) then \(e\) and \(f\) +act injectively in \(K[x, x^{-1}]^{\varphi_\lambda}\), so that \(K[x, +x^{-1}]^{\varphi_\lambda}\) is simple. In particular, if \(\lambda, \mu \notin +1 + 2 \mathbb{Z}\) with \(\lambda \notin \mu + 2 \mathbb{Z}\) then \(K[x, +x^{-1}]^{\varphi_\lambda}\) and \(K[x, x^{-1}]^{\varphi_\mu}\) are +non-isomorphic simple cuspidal \(\mathfrak{sl}_2(K)\)-modules, since their +supports differ. These cuspidal modules can be ``glued together'' in a +\emph{monstrous concoction} by summing over \(\lambda \in K\), as in \[ \mathcal{M} = \bigoplus_{\lambda + 2 \mathbb{Z} \in \mfrac{K}{2 \mathbb{Z}}} - \varphi_\lambda K[x, x^{-1}], + K[x, x^{-1}]^{\varphi_\lambda}, \] To a distracted spectator, \(\mathcal{M}\) may look like just another, @@ -467,7 +467,7 @@ families}. \begin{example}\label{ex:sl-laurent-family} The module \(\mathcal{M} = \bigoplus_{\lambda + 2 \mathbb{Z} \in - \mfrac{K}{2 \mathbb{Z}}} \varphi_\lambda K[x, x^{-1}]\) is a degree \(1\) + \mfrac{K}{2 \mathbb{Z}}} K[x, x^{-1}]^{\varphi_\lambda}\) is a degree \(1\) coherent \(\mathfrak{sl}_2(K)\)-family. \end{example} @@ -1161,7 +1161,7 @@ In general, we may twist the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module u & \mapsto F_\beta u F_\beta^{-1} \end{align*} is a natural candidate for such a twisting automorphism. Indeed, we will soon -see that \((\theta_\beta \Sigma^{-1} M)_\lambda = \Sigma^{-1} M_{\lambda + +see that \((\Sigma^{-1} M^{\theta_\beta})_\lambda = \Sigma^{-1} M_{\lambda + \beta}\). However, this is hardly useful to us, since \(\beta \in Q\) and therefore \(\beta + \operatorname{supp} \Sigma^{-1} M = \operatorname{supp} \Sigma^{-1} M\). If we want to expand the support of \(\Sigma^{-1} M\) we will @@ -1193,10 +1193,10 @@ Explicitly\dots \item If \(\lambda, \mu \in \mathfrak{h}^*\), \(N\) is a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module whose restriction to \(\mathcal{U}(\mathfrak{g})\) is a weight \(\mathfrak{g}\)-module and - \(\theta_\lambda N\) is the \(\Sigma^{-1} + \(N^{\theta_\lambda}\) is the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module \(N\) twisted by the automorphism - \(\theta_\lambda\) then \(N_\mu = (\theta_\lambda N)_{\mu + \lambda}\). - In particular, \(\operatorname{supp} \theta_\lambda N = \lambda + + \(\theta_\lambda\) then \(N_\mu = (N^{\theta_\lambda})_{\mu + \lambda}\). + In particular, \(\operatorname{supp} N^{\theta_\lambda} = \lambda + \operatorname{supp} N\). \end{enumerate} \end{proposition} @@ -1264,7 +1264,7 @@ Explicitly\dots Finally, let \(N\) be a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module whose restriction is a weight module. If \(n \in N\) then \[ - n \in (\theta_\lambda N)_{\mu + \lambda} + n \in (N^{\theta_\lambda})_{\mu + \lambda} \iff \theta_\lambda(H) \cdot n = (\mu + \lambda)(H) n \, \forall H \in \mathfrak{h} \] @@ -1282,14 +1282,14 @@ Explicitly\dots and hence \[ \begin{split} - n \in (\theta_\lambda N)_{\mu + \lambda} + n \in (N^{\theta_\lambda})_{\mu + \lambda} & \iff (\lambda(H) + H) \cdot n = (\mu + \lambda)(H) n \; \forall H \in \mathfrak{h} \\ & \iff H \cdot n = \mu(H) n \; \forall H \in \mathfrak{h} \\ & \iff n \in N_\mu \end{split}, \] - so that \((\theta_\lambda N)_{\mu + \lambda} = N_\mu\). + so that \((N^{\theta_\lambda})_{\mu + \lambda} = N_\mu\). \end{proof} It should now be obvious\dots @@ -1301,22 +1301,23 @@ It should now be obvious\dots \begin{proof} Take\footnote{Here we fix some $\lambda_\xi \in \xi$ for each $Q$-coset $\xi \in \mfrac{\mathfrak{h}^*}{Q}$. While there is a natural isomorphism - $\theta_\lambda \Sigma^{-1} M \isoto \theta_\mu \Sigma^{-1} M$ for each $\mu - \in \lambda + Q$, they are not the same \(\mathfrak{g}\)-modules strictly - speaking. This is yet another obstruction to the functoriality of our - constructions.} + $\Sigma^{-1} M^{\theta_\lambda} \isoto \Sigma^{-1} M^{\theta_\mu}$ for each + $\mu \in \lambda + Q$, they are not the same \(\mathfrak{g}\)-modules + strictly speaking. This is yet another obstruction to the functoriality of + our constructions.} \[ \mathcal{M} = \bigoplus_{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q}} - \theta_\lambda \Sigma^{-1} M + \Sigma^{-1} M^{\theta_\lambda} \] - It is clear \(M\) lies in \(\Sigma^{-1} M = \theta_0 \Sigma^{-1} M\) and + It is clear \(M\) lies in \(\Sigma^{-1} M = \Sigma^{-1} M^{\theta_0}\) and therefore \(M \subset \mathcal{M}\). On the other hand, \(\dim - \mathcal{M}_\mu = \dim \theta_\lambda \Sigma^{-1} M_\mu = \dim \Sigma^{-1} - M_{\mu - \lambda} = d\) for all \(\mu \in \lambda + Q\) -- \(\lambda\) - standing for some fixed representative of its \(Q\)-coset. Furthermore, given - \(u \in \mathcal{U}(\mathfrak{g})_0\) and \(\mu \in \lambda + Q\), + \mathcal{M}_\mu = \dim (\Sigma^{-1} M^{\theta_\lambda})_\mu = \dim + \Sigma^{-1} M_{\mu - \lambda} = d\) for all \(\mu \in \lambda + Q\) -- + \(\lambda\) standing for some fixed representative of its \(Q\)-coset. + Furthermore, given \(u \in \mathcal{U}(\mathfrak{g})_0\) and \(\mu \in + \lambda + Q\), \[ \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) = \operatorname{Tr}