- Commit
- 650a27168ca5d4a2b0b1365554febe4a4671be3b
- Parent
- 09f9604631774576676405d3e92441d8b6445e26
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added the definition of the semisimplification of a coherent family
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added the definition of the semisimplification of a coherent family
1 file changed, 27 insertions, 2 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 29 | 27 | 2 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -22,6 +22,7 @@ \end{example} % TODO: Is every quotient of a weight module a weight module too? +% TODO: I think so! \begin{example} Proposition~\ref{thm:verma-is-weight-mod} and proposition~\ref{thm:max-verma-submod-is-weight} imply that the Verma module @@ -120,6 +121,10 @@ \end{enumerate} \end{definition} +% TODOO: Add a discussion on how this may sound unintuitive, but the motivation +% comes from the relationship between highest weight modules and coherent +% families + \begin{definition} A coherent family \(\mathcal{M}\) called \emph{irreducible} if \(\mathcal{M}_\lambda\) is a simple @@ -133,7 +138,27 @@ \(V\) as a subquotient. \end{definition} -% TODO: Define the semisimplification of a coherent family +% Mathieu's proof of this is somewhat profane, I don't think it's worth +% including it in here +\begin{proposition} + Any coherent family \(\mathcal{M}\) has finite length as a + \(\mathfrak{g}\)-module. +\end{proposition} + +% TODO: Add a proof! +\begin{corollary} + Given a coherent family \(\mathcal{M}\) and a composition series \(0 = + \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_n = + \mathcal{M}\), the \(\mathfrak{g}\)-module + \[ + \mathcal{M}^{\operatorname{ss}} + = \bigoplus_i \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i} + \] + is also a coherent family, called \emph{the semisimplification\footnote{This + name is due to the fact that $\mathcal{M}^{\operatorname{ss}}$ is the direct + sum of irreducible $\mathfrak{g}$-modules} of \(\mathcal{M}\)}. +\end{corollary} + \begin{theorem}[Mathieu] Let \(V\) be an infinite-dimensional admissible irreducible \(\mathfrak{g}\)-module of degree \(d\). There exists a unique semisimple @@ -161,7 +186,7 @@ \[ \operatorname{Ext}(V) \cong \mathcal{M}^{\operatorname{ss}} - = \bigoplus_j \mfrac{\mathcal{M}_{j + 1}}{\mathcal{M}_j}, + = \bigoplus_i \mfrac{\mathcal{M}_{i + 1}}{\mathcal{M}_i}, \] so that \(V\) is contained in \(\operatorname{Ext}(V)\).