diff --git a/sections/semisimple-algebras.tex b/sections/semisimple-algebras.tex
@@ -197,40 +197,56 @@ basic}. In fact, all we need to know is\dots
induces long exact sequences
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- \operatorname{Hom}_{\mathfrak{g}}(S, W) \arrow{r}{i \circ -} &
- \operatorname{Hom}_{\mathfrak{g}}(S, V) \arrow{r}{\pi \circ -} &
- \operatorname{Hom}_{\mathfrak{g}}(S, U) \arrow{r} &
- \hphantom{0} \\
- \hphantom{0} \arrow{r} &
- \operatorname{Ext}^1(S, W) \arrow{r} &
- \operatorname{Ext}^1(S, V) \arrow{r} &
- \operatorname{Ext}^1(S, U) \arrow{r} &
- \hphantom{0} \\
- \hphantom{0} \arrow{r} &
- \operatorname{Ext}^2(S, W) \arrow{r} &
- \operatorname{Ext}^2(S, V) \arrow{r} &
- \operatorname{Ext}^2(S, U) \arrow{r} &
+ 0 \arrow[r] &
+ \operatorname{Hom}_{\mathfrak{g}}(S, W)
+ \arrow[r, "i \circ -"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} &
+ \operatorname{Hom}_{\mathfrak{g}}(S, V) \arrow[r, "\pi \circ -"', swap] &
+ \operatorname{Hom}_{\mathfrak{g}}(S, U)
+ \ar[rounded corners,
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (X.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ \operatorname{Ext}^1(S, W)
+ \arrow[r]\ar[draw=none]{d}[name=Y, anchor=center]{} &
+ \operatorname{Ext}^1(S, V) \arrow[r] &
+ \operatorname{Ext}^1(S, U)
+ \ar[rounded corners,
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (Y.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ \operatorname{Ext}^2(S, W) \arrow[r] &
+ \operatorname{Ext}^2(S, V) \arrow[r] &
+ \operatorname{Ext}^2(S, U) \arrow[r, dashed] &
\cdots
\end{tikzcd}
\end{center}
and
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- \operatorname{Hom}_{\mathfrak{g}}(U, S) \arrow{r}{- \circ \pi} &
- \operatorname{Hom}_{\mathfrak{g}}(V, S) \arrow{r}{- \circ i} &
- \operatorname{Hom}_{\mathfrak{g}}(W, S) \arrow{r} &
- \hphantom{0} \\
- \hphantom{0} \arrow{r} &
- \operatorname{Ext}^1(U, S) \arrow{r} &
- \operatorname{Ext}^1(V, S) \arrow{r} &
- \operatorname{Ext}^1(W, S) \arrow{r} &
- \hphantom{0} \\
- \hphantom{0} \arrow{r} &
- \operatorname{Ext}^2(U, S) \arrow{r} &
- \operatorname{Ext}^2(V, S) \arrow{r} &
- \operatorname{Ext}^2(W, S) \arrow{r} &
+ 0 \arrow[r] &
+ \operatorname{Hom}_{\mathfrak{g}}(U, S)
+ \arrow[r, "- \circ \pi"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} &
+ \operatorname{Hom}_{\mathfrak{g}}(V, S) \arrow[r, "- \circ i"', swap] &
+ \operatorname{Hom}_{\mathfrak{g}}(W, S)
+ \ar[rounded corners,
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (X.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ \operatorname{Ext}^1(U, S)
+ \arrow[r]\ar[draw=none]{d}[name=Y, anchor=center]{} &
+ \operatorname{Ext}^1(V, S) \arrow[r] &
+ \operatorname{Ext}^1(W, S)
+ \ar[rounded corners,
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (Y.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ \operatorname{Ext}^2(U, S) \arrow[r] &
+ \operatorname{Ext}^2(V, S) \arrow[r] &
+ \operatorname{Ext}^2(W, S) \arrow[r, dashed] &
\cdots
\end{tikzcd}
\end{center}
@@ -289,13 +305,18 @@ implies\dots
induces a long exact sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- W^{\mathfrak{g}} \arrow{r}{i} &
- V^{\mathfrak{g}} \arrow{r}{\pi} &
- U^{\mathfrak{g}} \arrow{r} &
- H^1(\mathfrak{g}, W) \arrow{r} &
- H^1(\mathfrak{g}, V) \arrow{r} &
- H^1(\mathfrak{g}, U) \arrow{r} &
+ 0 \arrow[r] &
+ W^{\mathfrak{g}} \arrow[r, "i"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} &
+ V^{\mathfrak{g}} \arrow[r, "\pi"', swap] &
+ U^{\mathfrak{g}}
+ \ar[rounded corners,
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (X.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ H^1(\mathfrak{g}, W) \arrow[r] &
+ H^1(\mathfrak{g}, V) \arrow[r] &
+ H^1(\mathfrak{g}, U) \arrow[r, dashed] &
\cdots
\end{tikzcd}
\end{center}
@@ -311,13 +332,13 @@ implies\dots
\operatorname{Hom}_{\mathfrak{g}}(K, V)
\arrow{r}{\pi \circ -} \arrow{d} &
\operatorname{Hom}_{\mathfrak{g}}(K, U) \arrow{r} \arrow{d} &
- H^1(\mathfrak{g}, W) \arrow{r} \arrow[Rightarrow, no head]{d} &
+ H^1(\mathfrak{g}, W) \arrow[dashed]{r} \arrow[Rightarrow, no head]{d} &
\cdots \\
0 \arrow{r} &
W^{\mathfrak{g}} \arrow[swap]{r}{i} &
V^{\mathfrak{g}} \arrow[swap]{r}{\pi} &
U^{\mathfrak{g}} \arrow{r} &
- H^1(\mathfrak{g}, W) \arrow{r} &
+ H^1(\mathfrak{g}, W) \arrow[dashed]{r} &
\cdots
\end{tikzcd}
\end{center}
@@ -353,7 +374,7 @@ can computed very concretely by considering the canonical acyclic resolution
K \rar &
\mathfrak{g} \rar &
\wedge^2 \mathfrak{g} \rar &
- \wedge^3 \mathfrak{g} \rar &
+ \wedge^3 \mathfrak{g} \arrow[dashed]{r} &
\cdots
\end{tikzcd}
\end{center}
@@ -518,10 +539,10 @@ As promised, the Casimir element can be used to establish\dots
induces a long exact sequence of the form
\begin{center}
\begin{tikzcd}
- \cdots \arrow{r} &
+ \cdots \arrow[dashed]{r} &
H^1(\mathfrak{g}, W) \arrow{r} &
H^1(\mathfrak{g}, V) \arrow{r} &
- H^1(\mathfrak{g}, \sfrac{V}{W}) \arrow{r} &
+ H^1(\mathfrak{g}, \sfrac{V}{W}) \arrow[dashed]{r} &
\cdots
\end{tikzcd}
\end{center}
@@ -571,16 +592,18 @@ We are now finally ready to prove\dots
sequence of \(\mathfrak{g}\)-modules. This then induces a long exact sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- \operatorname{Hom}(U, W)^{\mathfrak{g}} \arrow{r} &
- \operatorname{Hom}(U, V)^{\mathfrak{g}} \arrow{r}{\pi \circ -} &
- \operatorname{Hom}(U, U)^{\mathfrak{g}} \arrow{r} &
- \hphantom{0}
- \\
- \hphantom{0} \arrow{r} &
- H^1(\mathfrak{g}, \operatorname{Hom}(U, W)) \arrow{r} &
- H^1(\mathfrak{g}, \operatorname{Hom}(U, V)) \arrow{r} &
- H^1(\mathfrak{g}, \operatorname{Hom}(U, U)) \arrow{r} &
+ 0 \arrow[r] &
+ \operatorname{Hom}(U, W)^{\mathfrak{g}} \arrow[r]\ar[draw=none]{d}[name=X, anchor=center]{} &
+ \operatorname{Hom}(U, V)^{\mathfrak{g}} \arrow[r, "\pi \circ -"', swap] &
+ \operatorname{Hom}(U, U)^{\mathfrak{g}}
+ \ar[rounded corners,
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (X.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ H^1(\mathfrak{g}, \operatorname{Hom}(U, W)) \arrow[r] &
+ H^1(\mathfrak{g}, \operatorname{Hom}(U, V)) \arrow[r] &
+ H^1(\mathfrak{g}, \operatorname{Hom}(U, U)) \arrow[r, dashed] &
\cdots
\end{tikzcd}
\end{center}