- Commit
- 7abeda5bc9d129a3946bb2cb668dcf4cae777625
- Parent
- 96d61615e40b5e6b3251e7e14c6c72ecb489bd6a
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Tweaked some notation
Minor tweak in the notation for the Jordan form
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Tweaked some notation
Minor tweak in the notation for the Jordan form
1 file changed, 29 insertions, 29 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/semisimple-algebras.tex | 58 | 29 | 29 |
diff --git a/sections/semisimple-algebras.tex b/sections/semisimple-algebras.tex @@ -155,40 +155,40 @@ Jordan decomposition of a semisimple Lie algebra}. \begin{proposition}[Jordan] Given a finite-dimensional vector space \(V\) and an operator \(T : V \to - V\), there are unique commuting operators \(T_{\operatorname{s}}, - T_{\operatorname{n}} : V \to V\), with \(T_{\operatorname{s}}\) - diagonalizable and \(T_{\operatorname{n}}\) nilpotent, such that \(T = - T_{\operatorname{s}} + T_{\operatorname{n}}\). The pair - \((T_{\operatorname{s}}, T_{\operatorname{n}})\) is known as \emph{the Jordan + V\), there are unique commuting operators \(T_{\operatorname{ss}}, + T_{\operatorname{nil}} : V \to V\), with \(T_{\operatorname{ss}}\) + diagonalizable and \(T_{\operatorname{nil}}\) nilpotent, such that \(T = + T_{\operatorname{ss}} + T_{\operatorname{nil}}\). The pair + \((T_{\operatorname{ss}}, T_{\operatorname{nil}})\) is known as \emph{the Jordan decomposition of \(T\)}. \end{proposition} \begin{proposition}\index{abstract Jordan decomposition} Given \(\mathfrak{g}\) semisimple and \(X \in \mathfrak{g}\), there are - \(X_{\operatorname{s}}, X_{\operatorname{n}} \in \mathfrak{g}\) such that \(X - = X_{\operatorname{s}} + X_{\operatorname{n}}\), \([X_{\operatorname{s}}, - X_{\operatorname{n}}] = 0\), \(\operatorname{ad}(X_{\operatorname{s}})\) is a - diagonalizable operator and \(\operatorname{ad}(X_{\operatorname{n}})\) is a - nilpotent operator. The pair \((X_{\operatorname{s}}, X_{\operatorname{n}})\) + \(X_{\operatorname{ss}}, X_{\operatorname{nil}} \in \mathfrak{g}\) such that \(X + = X_{\operatorname{ss}} + X_{\operatorname{nil}}\), \([X_{\operatorname{ss}}, + X_{\operatorname{nil}}] = 0\), \(\operatorname{ad}(X_{\operatorname{ss}})\) is a + diagonalizable operator and \(\operatorname{ad}(X_{\operatorname{nil}})\) is a + nilpotent operator. The pair \((X_{\operatorname{ss}}, X_{\operatorname{nil}})\) is known as \emph{the Jordan decomposition of \(X\)}. \end{proposition} It should be clear from the uniqueness of -\(\operatorname{ad}(X)_{\operatorname{s}}\) and -\(\operatorname{ad}(X)_{\operatorname{n}}\) that the Jordan decomposition of +\(\operatorname{ad}(X)_{\operatorname{ss}}\) and +\(\operatorname{ad}(X)_{\operatorname{nil}}\) that the Jordan decomposition of \(\operatorname{ad}(X)\) is \(\operatorname{ad}(X) = -\operatorname{ad}(X_{\operatorname{s}}) + -\operatorname{ad}(X_{\operatorname{n}})\). What is perhaps more remarkable is +\operatorname{ad}(X_{\operatorname{ss}}) + +\operatorname{ad}(X_{\operatorname{nil}})\). What is perhaps more remarkable is the fact this holds for \emph{any} finite-dimensional \(\mathfrak{g}\)-module. In other words\dots \begin{proposition}\label{thm:preservation-jordan-form} Let \(M\) be a finite-dimensional \(\mathfrak{g}\)-module and \(X \in \mathfrak{g}\). Denote by \(X\!\restriction_M\) the action of \(X\) on - \(M\). Then \(X_{\operatorname{s}}\!\restriction_M = - (X\!\restriction_M)_{\operatorname{s}}\) and - \(X_{\operatorname{n}}\!\restriction_M = - (X\!\restriction_M)_{\operatorname{n}}\). + \(M\). Then \(X_{\operatorname{ss}}\!\restriction_M = + (X\!\restriction_M)_{\operatorname{ss}}\) and + \(X_{\operatorname{nil}}\!\restriction_M = + (X\!\restriction_M)_{\operatorname{nil}}\). \end{proposition} This last result is known as \emph{the preservation of the Jordan form}, and a @@ -216,20 +216,20 @@ implies\dots Fix some \(H \in \mathfrak{h}\). It suffices to show that \(H\!\restriction_M : M \to M\) is a diagonalizable operator. - If we write \(H = H_{\operatorname{s}} + H_{\operatorname{n}}\) for the + If we write \(H = H_{\operatorname{ss}} + H_{\operatorname{nil}}\) for the abstract Jordan decomposition of \(H\), we know - \(\operatorname{ad}(H_{\operatorname{s}}) = - \operatorname{ad}(H)_{\operatorname{s}}\). But \(\operatorname{ad}(H)\) is a - diagonalizable operator, so that \(\operatorname{ad}(H)_{\operatorname{s}} = + \(\operatorname{ad}(H_{\operatorname{ss}}) = + \operatorname{ad}(H)_{\operatorname{ss}}\). But \(\operatorname{ad}(H)\) is a + diagonalizable operator, so that \(\operatorname{ad}(H)_{\operatorname{ss}} = \operatorname{ad}(H)\). This implies - \(\operatorname{ad}(H_{\operatorname{n}}) = - \operatorname{ad}(H)_{\operatorname{n}} = 0\), so that - \(H_{\operatorname{n}}\) is a central element of \(\mathfrak{g}\). Since - \(\mathfrak{g}\) is semisimple, \(H_{\operatorname{n}} = 0\). + \(\operatorname{ad}(H_{\operatorname{nil}}) = + \operatorname{ad}(H)_{\operatorname{nil}} = 0\), so that + \(H_{\operatorname{nil}}\) is a central element of \(\mathfrak{g}\). Since + \(\mathfrak{g}\) is semisimple, \(H_{\operatorname{nil}} = 0\). Proposition~\ref{thm:preservation-jordan-form} then implies - \((H\!\restriction_M)_{\operatorname{n}} = - H_{\operatorname{n}}\!\restriction_M = 0\), so \(H\!\restriction_M = - (H\!\restriction_M)_{\operatorname{s}}\) is a diagonalizable operator. + \((H\!\restriction_M)_{\operatorname{nil}} = + H_{\operatorname{nil}}\!\restriction_M = 0\), so \(H\!\restriction_M = + (H\!\restriction_M)_{\operatorname{ss}}\) is a diagonalizable operator. \end{proof} We should point out that this last proof only works for semisimple Lie