- Commit
- 9955d391c0617ce48faf164b8e74b0a818376d51
- Parent
- ce1341412323d240e47aed52a3404e3f75a4e50d
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Removed a reduntant formula
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Removed a reduntant formula
1 file changed, 5 insertions, 6 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 11 | 5 | 6 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -558,12 +558,11 @@ \begin{corollary} Let \(\Sigma\) be as in lemma~\ref{thm:nice-basis-for-inversion} and \((F_\beta)_{\beta \in \Sigma} \subset \mathcal{U}(\mathfrak{g})\) be the - multiplicative subset \((F_\beta)_{\beta \in \Sigma}\) generated by the - \(F_\beta\)'s. The \(K\)-algebra \(\Sigma^{-1} \mathcal{U}(\mathfrak{g}) = - (F_\beta)_{\beta \in \Sigma}^{-1} \mathcal{U}(\mathfrak{g})\) is well - defined. Moreover, if we denote by \(\Sigma^{-1} V\) the localization of - \(V\) by \((F_\beta)_{\beta \in \Sigma}\), the localization map \(V \to - \Sigma^{-1} V\) is injective. + multiplicative subset generated by the \(F_\beta\)'s. The \(K\)-algebra + \(\Sigma^{-1} \mathcal{U}(\mathfrak{g}) = (F_\beta)_{\beta \in \Sigma}^{-1} + \mathcal{U}(\mathfrak{g})\) is well defined. Moreover, if we denote by + \(\Sigma^{-1} V\) the localization of \(V\) by \((F_\beta)_{\beta \in + \Sigma}\), the localization map \(V \to \Sigma^{-1} V\) is injective. \end{corollary} % TODO: Fix V and Sigma beforehand