- Commit
- 9a4b97f248210161e9495969db4506ba00c23395
- Parent
- 3ae1a99de762cef0a6de84712b80254f81c71bdd
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Changed the notation for the localization of the modules
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Changed the notation for the localization of the modules
1 file changed, 73 insertions, 86 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 159 | 73 | 86 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -268,6 +268,12 @@ \section{Existance of Coherent Extensions} +% TODO: Comment on the intuition behind the proof: we can get vectors in a +% given eigenspace by translating by the F's and E's, but neither of those are +% injective in general, so the translation could take nonzero vectors to zero. +% If the F's were invertible this problem wouldn't exist, so we might as well +% invert them by force! + % TODO: Add the results on Ore's localization % TODO: Define what a set commuting roots is @@ -281,43 +287,33 @@ \begin{corollary} Let \(\Sigma\) be as in lemma~\ref{thm:nice-basis-for-inversion} and \((F_\beta : \beta \in \Sigma) \subset \mathcal{U}(\mathfrak{g})\) be - the multiplicative subset generated by \(F_\beta\), \(\beta \in \Sigma\). - The \(K\)-algebra \(\mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in - \Sigma)}\) is well defined and the localization map + the multiplicative subset \((F_\beta)_{\beta \in \Sigma}\) generated by the + \(F_\beta\)'s. + The \(K\)-algebra \(\Sigma^{-1} \mathcal{U}(\mathfrak{g}) = (F_\beta)_{\beta + \in \Sigma}^{-1} \mathcal{U}(\mathfrak{g})\) is well defined. Moreover, if we + denote by \(\Sigma^{-1} V\) the localization of \(V\) by \((F_\beta)_{\beta + \in \Sigma}\), the localization map \begin{align*} - V & - \to \mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in \Sigma)} - \otimes V \\ - u & \mapsto 1 \otimes u + V & \to \Sigma^{-1} V \\ + v & \mapsto 1 \otimes v \end{align*} is injective. \end{corollary} +% TODO: Fix V and Sigma beforehand \begin{proposition}\label{thm:irr-admissible-is-contained-in-nice-mod} - Let \(V\) be an irreducible infinite-dimensional admissible - \(\mathfrak{g}\)-module. Then \(V\) is contained in a - \(\mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in \Sigma)}\)-module \(W\), - whose restriction to the scalars in \(\mathcal{U}(\mathfrak{g})\) is a weight - module of degree \(d\) such that \(\operatorname{supp} W = Q + - \operatorname{supp} V\) and \(\dim W_\lambda = d\) for all \(\lambda \in - \operatorname{supp} W\). + The the restriction of the localization \(\Sigma^{-1} V\) is a weight + \(\mathfrak{g}\)-module of degree \(d\) with \(\operatorname{supp} + \Sigma^{-1} V = Q + \operatorname{supp} V\) and \(\dim \Sigma^{-1} V_\lambda + = d\) for all \(\lambda \in \operatorname{supp} \Sigma^{-1} V\). \end{proposition} \begin{proof} - Take \(W = \mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in \Sigma)} - \otimes_{\mathcal{U}(\mathfrak{g})} V\). Since each \(F_\beta\) acts - injectively in \(V\), the localization map - \begin{align*} - V & \to W \\ - v & \mapsto 1 \otimes v - \end{align*} - is injective. In particular, we may regard \(V\) as a - \(\mathfrak{g}\)-submodule of \(W\). - Fix some \(\beta \in \Sigma\). We begin by show that \(F_\beta\) and \(F_\beta^{-1}\) map the weight space \(V_\lambda\) to the weight spaces - \(W_{\lambda - \beta}\) and \(W_{\lambda + \beta}\) respectively. Indeed, - given \(v \in V_\lambda\) and \(H \in \mathfrak{h}\) we have + \(\Sigma^{-1} V_{\lambda - \beta}\) and \(\Sigma^{-1} V_{\lambda + \beta}\) + respectively. Indeed, given \(v \in V_\lambda\) and \(H \in \mathfrak{h}\) we + have \[ H F_\beta v = ([H, F_\beta] + F_\beta H)v @@ -344,99 +340,90 @@ % TODO: Remark beforehand that any element of the localization of V may be % written as an element of v tensored by an element of the form 1/s - From the fact that \(F_\beta^{\pm 1}\) maps \(V_\lambda\) to \(W_{\lambda \pm - \beta}\) follows our first conclusion: since \(V\) is a weight module and - every element of \(W\) has the form \(s^{-1} v = s^{-1} \otimes v\) for \(s - \in (F_\beta : \beta \in \Sigma)\) and \(v \in V\), we can see that \(W = - \bigoplus_\lambda W_\lambda\). Furtheremore, since the action of each - \(F_\beta\) in \(W\) is bijective and \(\Sigma\) is a basis of \(Q\) we - obtain \(\operatorname{supp} W = Q + \operatorname{supp} V\). - - % TODOOOOOO: Change the notation for the subspace U + From the fact that \(F_\beta^{\pm 1}\) maps \(V_\lambda\) to \(\Sigma^{-1} + V_{\lambda \pm \beta}\) follows our first conclusion: since \(V\) is a weight + module and every element of \(\Sigma^{-1} V\) has the form \(s^{-1} v = + s^{-1} \otimes v\) for \(s \in (F_\beta)_{\beta \in \Sigma}\) and \(v \in + V\), we can see that \(\Sigma^{-1} V = \bigoplus_\lambda \Sigma^{-1} + V_\lambda\). Furtheremore, since the action of each \(F_\beta\) in + \(\Sigma^{-1} V\) is bijective and \(\Sigma\) is a basis of \(Q\) we obtain + \(\operatorname{supp} \Sigma^{-1} V = Q + \operatorname{supp} V\). + Again, because of the bijectivity of the \(F_\beta\)'s, to see that \(\dim - W_\lambda = d\) for all \(\lambda \in \mathfrak{h}^*\) it suffices to show - that \(\dim W_\lambda = d\) for some \(\lambda \in \operatorname{supp} W\). - We may take \(\lambda \operatorname{supp} V\) with \(\dim V_\lambda = d\). - For any finite-dimensional subspace \(U \subset W_\lambda\) we can find \(s - \in (F_\beta)_{\beta \in \Sigma}\) such that \(s U \subset V\). If \(s = - F_{\beta_{i_1}} \cdots F_{\beta_{i_n}}\), it is clear \(s U \subset - V_{\lambda - \beta_{i_1} - \cdots - \beta_{i_n}}\), so \(\dim U \le d\) -- - \(s\) is injective. This holds for all finite-dimensional \(U \subset - W_\lambda\), so \(\dim W_\lambda \le d\). It then follows from the fact that - \(V_\lambda \subset W_\lambda\) that \(\dim W_\lambda = d\). + \Sigma^{-1} V_\lambda = d\) for all \(\lambda \in \operatorname{supp} + \Sigma^{-1} V\) it suffices to show that \(\dim \Sigma^{-1} V_\lambda = d\) + for some \(\lambda \in \operatorname{supp} \Sigma^{-1} V\). We may take + \(\lambda \in \operatorname{supp} V\) with \(\dim V_\lambda = d\). For any + finite-dimensional subspace \(W \subset \Sigma^{-1} V_\lambda\) we can find + \(s \in (F_\beta)_{\beta \in \Sigma}\) such that \(s W \subset V\). If \(s = + F_{\beta_{i_1}} \cdots F_{\beta_{i_n}}\), it is clear \(s W \subset + V_{\lambda - \beta_{i_1} - \cdots - \beta_{i_n}}\), so \(\dim W \le d\) -- + \(s\) is injective. This holds for all finite-dimensional \(W \subset + \Sigma^{-1} V_\lambda\), so \(\dim \Sigma^{-1} V_\lambda \le d\). It then + follows from the fact that \(V_\lambda \subset \Sigma^{-1} V_\lambda\) that + \(V_\lambda = \Sigma^{-1} V_\lambda\) and therefore \(\dim + \Sigma^{-1}_\lambda = d\). \end{proof} % TODO: Remark that any module over the localization is a g-module if we % restrict it via the localization map, wich is injective in this case \begin{proposition}\label{thm:nice-automorphisms-exist} - There is a family of automorphisms \(\{\theta_\lambda : - \mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in \Sigma)} \to - \mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in \Sigma)}\}_{\lambda \in - \mathfrak{h}^*}\) such that + There is a family of automorphisms \(\{\theta_\lambda : \Sigma^{-1} + \mathcal{U}(\mathfrak{g}) \to \Sigma^{-1} + \mathcal{U}(\mathfrak{g})\}_{\lambda \in \mathfrak{h}^*}\) such that \begin{enumerate} - \item \(\theta_{k_1 \beta_1 + \cdots + k_n \beta_n}(u) = - F_{\beta_1}^{k_1} \cdots F_{\beta_n}^{k_n} u F_{\beta_1}^{- k_n} - \cdots F_{\beta_n}^{- k_1}\) for all \(u \in - \mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in \Sigma)}\) and \(k_1, + \item \(\theta_{k_1 \beta_1 + \cdots + k_n \beta_n}(r) = F_{\beta_1}^{k_1} + \cdots F_{\beta_n}^{k_n} r F_{\beta_1}^{- k_n} \cdots F_{\beta_n}^{- + k_1}\) for all \(r \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and \(k_1, \ldots, k_n \in \mathbb{Z}\). - \item For each \(u \in \mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in - \Sigma)}\) the map + \item For each \(r \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) the map \begin{align*} - \mathfrak{h}^* & - \to \mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in \Sigma)} \\ - \lambda & \mapsto \theta_\lambda(u) + \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ + \lambda & \mapsto \theta_\lambda(r) \end{align*} is polynomial. - \item If \(W\) is the \(\mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in - \Sigma)}\)-module \(\mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in - \Sigma)} \otimes V\), \(\lambda, \mu \in \mathfrak{h}^*\) and - \(\theta_\lambda W\) is the \(\mathcal{U}(\mathfrak{g})_{(F_\beta : - \beta \in \Sigma)}\)-module \(W\) twisted by the automorphism - \(\theta_\lambda\) then \(W_\mu = (\theta_\lambda W)_{\mu + - \lambda}\). + \item If \(\lambda, \mu \in \mathfrak{h}^*\) and \(\theta_\lambda + \Sigma^{-1} V\) is the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module + \(\Sigma^{-1} V\) twisted by the automorphism \(\theta_\lambda\) then + \(\Sigma^{-1} V_\mu = (\theta_\lambda \Sigma^{-1} V)_{\mu + \lambda}\). \end{enumerate} \end{proposition} \begin{proposition}[Mathieu] - Let \(V\) be an infinite-dimensional admissible irreducible - \(\mathfrak{g}\)-module of degree \(d\). There exists a coherent extension - \(\mathcal{M}\) of \(V\) with degree \(d\). + There exists a coherent extension \(\mathcal{M}\) of \(V\) with degree \(d\). \end{proposition} \begin{proof} Let \(\Lambda\) be a set of representatives of the \(Q\)-cosets in - \(\mathfrak{h}^*\) with \(0 \in \Lambda\), \(W = - \mathcal{U}(\mathfrak{g})_{(F_\beta : \beta \in \Sigma)} - \otimes_{\mathcal{U}(\mathfrak{g})} V\) be as in - proposition~\ref{thm:irr-admissible-is-contained-in-nice-mod} and take + \(\mathfrak{h}^*\) with \(0 \in \Lambda\) and take \[ \mathcal{M} - = \bigoplus_{\lambda \in \Lambda} \theta_\lambda W + = \bigoplus_{\lambda \in \Lambda} \theta_\lambda \Sigma^{-1} V \] - On the one hand, \(V\) lies in \(W = \theta_0 W\) -- notice that - \(\theta_0\) is just the identity operator -- and therefore \(V \subset - \mathcal{M}\). On the other hand, \(\dim \mathcal{M}_\mu = \dim - \theta_\lambda W_\mu = \dim W_{\mu - \lambda} = d\) for all \(\mu \in - \lambda + Q\), \(\lambda \in \Lambda\). Furtheremore, given \(u \in - C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\) and \(\mu \in \lambda + Q\), + On the one hand, \(V\) lies in \(\Sigma^{-1} V = \theta_0 \Sigma^{-1} V\) -- + notice that \(\theta_0\) is just the identity operator -- and therefore \(V + \subset \mathcal{M}\). On the other hand, \(\dim \mathcal{M}_\mu = \dim + \theta_\lambda \Sigma^{-1} V_\mu = \dim \Sigma^{-1} V_{\mu - \lambda} = d\) + for all \(\mu \in \lambda + Q\), \(\lambda \in \Lambda\). Furtheremore, given + \(u \in C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\) and \(\mu \in \lambda + + Q\), \[ \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) - = \operatorname{Tr}(\theta_\lambda(u)\!\restriction_{W_{\mu - \lambda}}) + = \operatorname{Tr} + (\theta_\lambda(u)\!\restriction_{\Sigma^{-1} V_{\mu - \lambda}}) \] is polynomial in \(\mu\) because of the second item of proposition~\ref{thm:nice-automorphisms-exist}. \end{proof} \begin{theorem}[Mathieu] - Let \(V\) be an infinite-dimensional admissible irreducible - \(\mathfrak{g}\)-module of degree \(d\). There exists a unique semisimple - coherent extension \(\operatorname{Ext}(V)\) of \(V\). More precisely, if - \(\mathcal{M}\) is any coherent extension of \(V\), then - \(\mathcal{M}^{\operatorname{ss}} \cong \operatorname{Ext}(V)\). Furthermore, - \(V\) is itself contained in \(\operatorname{Ext}(V)\) and + There exists a unique semisimple coherent extension \(\operatorname{Ext}(V)\) + of \(V\). More precisely, if \(\mathcal{M}\) is any coherent extension of + \(V\), then \(\mathcal{M}^{\operatorname{ss}} \cong \operatorname{Ext}(V)\). + Furthermore, \(V\) is itself contained in \(\operatorname{Ext}(V)\) and \(\operatorname{Ext}(V)\) is irreducible as a coherent family. \end{theorem}