- Commit
- 9a5c23acb779e5b7f0d151944f9b3e1b78cc064a
- Parent
- 65ec951a931cfab22b72fb6cdce3c6c53ce314b4
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Adicionado comentário sobre o fato de que nem todo módulo de dimensão infinita é módulo de peso
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Adicionado comentário sobre o fato de que nem todo módulo de dimensão infinita é módulo de peso
1 file changed, 7 insertions, 2 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/semisimple-algebras.tex | 9 | 7 | 2 |
diff --git a/sections/semisimple-algebras.tex b/sections/semisimple-algebras.tex @@ -1859,8 +1859,13 @@ As promised, this implies\dots \] \end{corollary} -% TODOO: Point out that simultaneous diagonalization only works in the -% finite-dimensional setting: not all modules are weight modules! +% TODO: Add a reference to the next chapter when it is done +We should point out that simultaneous diagonalization \emph{only works in the +finite-dimensional setting}. In fact, simultaneous diagonalization is usually +framed as an equivalent statement about diagonalizable \(n \times n\) matrices +-- where \(n\) is, of course, finite. In the next chapter we will encounter +\(\mathfrak{g}\)-modules for which the eigenspace decomposition \(V = +\bigoplus_{\lambda \in \mathfrak{h}^*} V_\lambda\) fails. \begin{corollary} The restriction of \(B\) to \(\mathfrak{h}\) is non-degenerate.