- Commit
- a0c44092379f3c76c821f58540252c59105e031e
- Parent
- d99a7e177e58a7b02190d93c8c933c23edc3d597
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Removed an unnecessary whitespace
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Removed an unnecessary whitespace
1 file changed, 3 insertions, 3 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 6 | 3 | 3 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -276,7 +276,7 @@ \begin{definition} Let \(R\) be a ring. A subset \(S \subset R\) is called \emph{multiplicative} - if \(s \cdot t \in S\) for all \(s, t \in S\) and \(0 \notin S\). + if \(s \cdot t \in S\) for all \(s, t \in S\) and \(0 \notin S\). A multiplicative subset \(S\) is said to satisfy \emph{Ore's localization condition} if for each \(r \in R\), \(s \in S\) there exists \(u_1, u_2 \in R\) and \(t_1, t_2 \in S\) such that \(s^{-1} r = u_1 t_1^{-1}\) and \(r @@ -400,7 +400,7 @@ V\), we can see that \(\Sigma^{-1} V = \bigoplus_\lambda \Sigma^{-1} V_\lambda\). Furtheremore, since the action of each \(F_\beta\) in \(\Sigma^{-1} V\) is bijective and \(\Sigma\) is a basis of \(Q\) we obtain - \(\operatorname{supp} \Sigma^{-1} V = Q + \operatorname{supp} V\). + \(\operatorname{supp} \Sigma^{-1} V = Q + \operatorname{supp} V\). Again, because of the bijectivity of the \(F_\beta\)'s, to see that \(\dim \Sigma^{-1} V_\lambda = d\) for all \(\lambda \in \operatorname{supp} @@ -484,7 +484,7 @@ \begin{proof} The existence part should be clear from the previous discussion: let \(\mathcal{M}\) be a coherent extension of \(V\) and take - \(\operatorname{Ext}(V) = \mathcal{M}^{\operatorname{ss}}\) of \(V\). + \(\operatorname{Ext}(V) = \mathcal{M}^{\operatorname{ss}}\) of \(V\). We claim \(V\) is contained in \(\operatorname{Ext}(V)\). Indeed, if we fix some composition series \(0 =