lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
a3a506da8a7e487dabff140c1675e2bf9dc95931
Parent
a05908f160f418ea797ffd5b11f50e28c0428984
Author
Pablo <pablo-escobar@riseup.net>
Date

Fixed a typo

Diffstat

1 file changed, 1 insertion, 1 deletion

Status File Name N° Changes Insertions Deletions
Modified sections/mathieu.tex 2 1 1
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -9,7 +9,7 @@
 \end{definition}
 
 \begin{definition}
-  A weight \(\mathfrak{g}\)-module is called \emph{an admissible} if \(\dim
+  A weight \(\mathfrak{g}\)-module is called \emph{admissible} if \(\dim
   V_\lambda\) is bounded. The lowest upper bound for \(\dim V_\lambda\) is
   called \emph{the degree of \(V\)}.
 \end{definition}