lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
a3e69f1fe63270514bda5a81e1f10c7754c26b18
Parent
61002310fbd10d017e15ee3138800e774b1873f1
Author
Pablo <pablo-escobar@riseup.net>
Date

Added a TODO item

Diffstat

1 file changed, 2 insertions, 0 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/mathieu.tex 2 2 0
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -65,6 +65,8 @@
   \left(\mfrac{V}{W}\right)_\lambda\) is surjective.
 \end{example}
 
+% TODO: Add an example of a module wich is NOT a weight module
+
 \begin{definition}
   A subalgebra \(\mathfrak{p} \subset \mathfrak{g}\) is called \emph{parabolic}
   if \(\mathfrak{b} \subset \mathfrak{p}\).