- Commit
- af06ac4d64a280dc313fd1b5d0aa16d496132d0e
- Parent
- b9179fc8eb4974246d33b58aa66aa95f09e2d7da
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Changed the notation for twisted modules (yet again)
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Changed the notation for twisted modules (yet again)
2 files changed, 61 insertions, 55 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | preamble.tex | 3 | 3 | 0 |
Modified | sections/mathieu.tex | 113 | 58 | 55 |
diff --git a/preamble.tex b/preamble.tex @@ -174,6 +174,9 @@ % Macro for Mathieu's coherent extension \newcommand{\mExt}{\mathcal{E\!x\!t}} +% Notation for twisted modules +\newcommand{\twisted}[2]{{}^{#2}\!{#1}} + % Isomorphism arrow \newcommand{\isoto}{\xlongrightarrow{\sim}}
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -288,16 +288,17 @@ is well understood. Namely, Fernando himself established\dots \Delta_{\mathfrak{p}} \subset \Delta\), where \(\Delta_{\mathfrak{p}}\) denotes the set of roots of \(\mathfrak{p}\). Furthermore, if \(\mathfrak{p}' \subset \mathfrak{g}\) is another parabolic subalgebra, \(M\) is a simple - cuspidal \(\mathfrak{p}\)-module and \(N\) is a simple - cuspidal \(\mathfrak{p}'\)-module then \(L_{\mathfrak{p}}(M) \cong + cuspidal \(\mathfrak{p}\)-module and \(N\) is a simple cuspidal + \(\mathfrak{p}'\)-module then \(L_{\mathfrak{p}}(M) \cong L_{\mathfrak{p}'}(N)\) if, and only if \(\mathfrak{p}' = - \mathfrak{p}^\sigma\) and \(M \cong N^\sigma\) for some\footnote{Here - $\mathfrak{p}^\sigma$ denotes the image of $\mathfrak{p}$ under the - automorphism of $\sigma : \mathfrak{g} \to \mathfrak{g}$ given by the - canonical action of $W$ on $\mathfrak{g}$ and $N^\sigma$ is the - $\mathfrak{p}$-module given by composing the map $\mathfrak{p}' \to - \mathfrak{gl}(N)$ with the restriction $\sigma\!\restriction_{\mathfrak{p}} : - \mathfrak{p} \to \mathfrak{p}'$.} \(\sigma \in W_M\), where + \twisted{\mathfrak{p}}{\sigma}\) and \(M \cong \twisted{N}{\sigma}\) for + some\footnote{Here $\twisted{\mathfrak{p}}{\sigma}$ denotes the image of + $\mathfrak{p}$ under the automorphism of $\sigma : \mathfrak{g} \to + \mathfrak{g}$ given by the canonical action of $W$ on $\mathfrak{g}$ and + $\twisted{N}{\sigma}$ is the $\mathfrak{p}$-module given by composing the map + $\mathfrak{p}' \to \mathfrak{gl}(N)$ with the restriction + $\sigma\!\restriction_{\mathfrak{p}} : \mathfrak{p} \to \mathfrak{p}'$.} + \(\sigma \in W_M\), where \[ W_M = \langle @@ -380,15 +381,16 @@ automorphisms of \(\operatorname{Diff}(K[x, x^{-1}])\). For example, given \frac{\mathrm{d}}{\mathrm{d} x} & \mapsto \frac{\mathrm{d}}{\mathrm{d} x} + \frac{\lambda}{2} x^{-1} \end{align*} -and consider the twisted module \(K[x, x^{-1}]^{\varphi_\lambda} = K[x, -x^{-1}]\), where some operator \(P \in \operatorname{Diff}(K[x, x^{-1}])\) acts -as \(\varphi_\lambda(P)\). +and consider the twisted module \(\twisted{K[x, x^{-1}]}{\varphi_\lambda} = +K[x, x^{-1}]\), where some operator \(P \in \operatorname{Diff}(K[x, x^{-1}])\) +acts as \(\varphi_\lambda(P)\). By composing the action map \(\operatorname{Diff}(K[x, x^{-1}]) \to -\operatorname{End}(K[x, x^{-1}]^{\varphi_\lambda})\) with the homomorphism of -algebras \(\mathcal{U}(\mathfrak{sl}_2(K)) \to \operatorname{Diff}(K[x, -x^{-1}])\) we can give \(K[x, x^{-1}]^{\varphi_\lambda}\) the structure of an -\(\mathfrak{sl}_2(K)\)-module. Diagrammatically, we have +\operatorname{End}(\twisted{K[x, x^{-1}]}{\varphi_\lambda})\) with the +homomorphism of algebras \(\mathcal{U}(\mathfrak{sl}_2(K)) \to +\operatorname{Diff}(K[x, x^{-1}])\) we can give \(\twisted{K[x, +x^{-1}]}{\varphi_\lambda}\) the structure of an \(\mathfrak{sl}_2(K)\)-module. +Diagrammatically, we have \begin{center} \begin{tikzcd} \mathcal{U}(\mathfrak{sl}_2(K)) \rar & @@ -402,7 +404,7 @@ x^{-1}])\) and \(\operatorname{Diff}(K[x, x^{1}]) \to \operatorname{End}(K[x, x^{-1}])\) are the ones from the previous diagram. Explicitly, we find that the action of \(\mathfrak{sl}_2(K)\) on -\(K[x, x^{-1}]^{\varphi_\lambda}\) is given by +\(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is given by \begin{align*} p & \overset{e}{\mapsto} \left( @@ -415,25 +417,26 @@ Explicitly, we find that the action of \(\mathfrak{sl}_2(K)\) on p & \overset{h}{\mapsto} \left( 2 x \frac{\mathrm{d}}{\mathrm{d}x} + \lambda \right) p, \end{align*} -so we can see \((K[x, x^{-1}]^{\varphi_\lambda})_{2 k + \frac{\lambda}{2}} = K -x^k\) for all \(k \in \mathbb{Z}\) and \((K[x, x^{-1}]^{\varphi_\lambda})_\mu = -0\) for all other \(\mu \in \mathfrak{h}^*\). +so we can see \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}_{2 k + +\frac{\lambda}{2}} = K x^k\) for all \(k \in \mathbb{Z}\) and \(\twisted{K[x, +x^{-1}]}{\varphi_\lambda}_\mu = 0\) for all other \(\mu \in \mathfrak{h}^*\). -Hence \(K[x, x^{-1}]^{\varphi_\lambda}\) is a degree \(1\) admissible -\(\mathfrak{sl}_2(K)\)-module with \(\operatorname{supp} K[x, -x^{-1}]^{\varphi_\lambda} = \frac{\lambda}{2} + 2 \mathbb{Z}\). One can also +Hence \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is a degree \(1\) admissible +\(\mathfrak{sl}_2(K)\)-module with \(\operatorname{supp} \twisted{K[x, +x^{-1}]}{\varphi_\lambda} = \frac{\lambda}{2} + 2 \mathbb{Z}\). One can also quickly check that if \(\lambda \notin 1 + 2 \mathbb{Z}\) then \(e\) and \(f\) -act injectively in \(K[x, x^{-1}]^{\varphi_\lambda}\), so that \(K[x, -x^{-1}]^{\varphi_\lambda}\) is simple. In particular, if \(\lambda, \mu \notin -1 + 2 \mathbb{Z}\) with \(\lambda \notin \mu + 2 \mathbb{Z}\) then \(K[x, -x^{-1}]^{\varphi_\lambda}\) and \(K[x, x^{-1}]^{\varphi_\mu}\) are -non-isomorphic simple cuspidal \(\mathfrak{sl}_2(K)\)-modules, since their -supports differ. These cuspidal modules can be ``glued together'' in a -\emph{monstrous concoction} by summing over \(\lambda \in K\), as in +act injectively in \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\), so that +\(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is simple. In particular, if +\(\lambda, \mu \notin 1 + 2 \mathbb{Z}\) with \(\lambda \notin \mu + 2 +\mathbb{Z}\) then \(\twisted{K[x, x^{-1}]}{\varphi_\lambda}\) and +\(\twisted{K[x, x^{-1}]}{\varphi_\mu}\) are non-isomorphic simple cuspidal +\(\mathfrak{sl}_2(K)\)-modules, since their supports differ. These cuspidal +modules can be ``glued together'' in a \emph{monstrous concoction} by summing +over \(\lambda \in K\), as in \[ \mathcal{M} = \bigoplus_{\lambda + 2 \mathbb{Z} \in \mfrac{K}{2 \mathbb{Z}}} - K[x, x^{-1}]^{\varphi_\lambda}, + \twisted{K[x, x^{-1}]}{\varphi_\lambda}, \] To a distracted spectator, \(\mathcal{M}\) may look like just another, @@ -481,8 +484,8 @@ families}. \begin{example}\label{ex:sl-laurent-family} The module \(\mathcal{M} = \bigoplus_{\lambda + 2 \mathbb{Z} \in - \mfrac{K}{2 \mathbb{Z}}} K[x, x^{-1}]^{\varphi_\lambda}\) is a degree \(1\) - coherent \(\mathfrak{sl}_2(K)\)-family. + \mfrac{K}{2 \mathbb{Z}}} \twisted{K[x, x^{-1}]}{\varphi_\lambda}\) is a + degree \(1\) coherent \(\mathfrak{sl}_2(K)\)-family. \end{example} \begin{example} @@ -1175,12 +1178,12 @@ In general, we may twist the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module u & \mapsto F_\beta u F_\beta^{-1} \end{align*} is a natural candidate for such a twisting automorphism. Indeed, we will soon -see that \((\Sigma^{-1} M^{\theta_\beta})_\lambda = \Sigma^{-1} M_{\lambda + -\beta}\). However, this is hardly useful to us, since \(\beta \in Q\) and -therefore \(\beta + \operatorname{supp} \Sigma^{-1} M = \operatorname{supp} -\Sigma^{-1} M\). If we want to expand the support of \(\Sigma^{-1} M\) we will -have to twist by automorphisms that shift its support by \(\lambda \in -\mathfrak{h}^*\) lying \emph{outside} of \(Q\). +see that \(\twisted{(\Sigma^{-1} M)}{\theta_\beta}_\lambda = \Sigma^{-1} +M_{\lambda + \beta}\). However, this is hardly useful to us, since \(\beta \in +Q\) and therefore \(\beta + \operatorname{supp} \Sigma^{-1} M = +\operatorname{supp} \Sigma^{-1} M\). If we want to expand the support of +\(\Sigma^{-1} M\) we will have to twist by automorphisms that shift its support +by \(\lambda \in \mathfrak{h}^*\) lying \emph{outside} of \(Q\). The situation is much less obvious in this case. Nevertheless, it turns out we can extend the family \(\{\theta_\beta\}_{\beta \in \Sigma}\) to a family of @@ -1207,11 +1210,11 @@ Explicitly\dots \item If \(\lambda, \mu \in \mathfrak{h}^*\), \(N\) is a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module whose restriction to \(\mathcal{U}(\mathfrak{g})\) is a weight \(\mathfrak{g}\)-module and - \(N^{\theta_\lambda}\) is the \(\Sigma^{-1} + \(\twisted{N}{\theta_\lambda}\) is the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module \(N\) twisted by the automorphism - \(\theta_\lambda\) then \(N_\mu = (N^{\theta_\lambda})_{\mu + \lambda}\). - In particular, \(\operatorname{supp} N^{\theta_\lambda} = \lambda + - \operatorname{supp} N\). + \(\theta_\lambda\) then \(N_\mu = \twisted{N}{\theta_\lambda}_{\mu + + \lambda}\). In particular, \(\operatorname{supp} + \twisted{N}{\theta_\lambda} = \lambda + \operatorname{supp} N\). \end{enumerate} \end{proposition} @@ -1278,7 +1281,7 @@ Explicitly\dots Finally, let \(N\) be a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module whose restriction is a weight module. If \(n \in N\) then \[ - n \in (N^{\theta_\lambda})_{\mu + \lambda} + n \in \twisted{N}{\theta_\lambda}_{\mu + \lambda} \iff \theta_\lambda(H) \cdot n = (\mu + \lambda)(H) n \, \forall H \in \mathfrak{h} \] @@ -1296,14 +1299,14 @@ Explicitly\dots and hence \[ \begin{split} - n \in (N^{\theta_\lambda})_{\mu + \lambda} + n \in \twisted{N}{\theta_\lambda}_{\mu + \lambda} & \iff (\lambda(H) + H) \cdot n = (\mu + \lambda)(H) n \; \forall H \in \mathfrak{h} \\ & \iff H \cdot n = \mu(H) n \; \forall H \in \mathfrak{h} \\ & \iff n \in N_\mu \end{split}, \] - so that \((N^{\theta_\lambda})_{\mu + \lambda} = N_\mu\). + so that \(\twisted{N}{\theta_\lambda}_{\mu + \lambda} = N_\mu\). \end{proof} It should now be obvious\dots @@ -1315,20 +1318,20 @@ It should now be obvious\dots \begin{proof} Take\footnote{Here we fix some $\lambda_\xi \in \xi$ for each $Q$-coset $\xi \in \mfrac{\mathfrak{h}^*}{Q}$. While there is a natural isomorphism - $\Sigma^{-1} M^{\theta_\lambda} \isoto \Sigma^{-1} M^{\theta_\mu}$ for each - $\mu \in \lambda + Q$, they are not the same \(\mathfrak{g}\)-modules - strictly speaking. This is yet another obstruction to the functoriality of - our constructions.} + $\twisted{(\Sigma^{-1} M)}{\theta_\lambda} \isoto \twisted{(\Sigma^{-1} + M)}{\theta_\mu}$ for each $\mu \in \lambda + Q$, they are not the same + \(\mathfrak{g}\)-modules strictly speaking. This is yet another obstruction + to the functoriality of our constructions.} \[ \mathcal{M} = \bigoplus_{\lambda + Q \in \mfrac{\mathfrak{h}^*}{Q}} - \Sigma^{-1} M^{\theta_\lambda} + \twisted{(\Sigma^{-1} M)}{\theta_\lambda} \] - It is clear \(M\) lies in \(\Sigma^{-1} M = \Sigma^{-1} M^{\theta_0}\) and - therefore \(M \subset \mathcal{M}\). On the other hand, \(\dim - \mathcal{M}_\mu = \dim (\Sigma^{-1} M^{\theta_\lambda})_\mu = \dim - \Sigma^{-1} M_{\mu - \lambda} = d\) for all \(\mu \in \lambda + Q\) -- + It is clear \(M\) lies in \(\Sigma^{-1} M = \twisted{(\Sigma^{-1} + M)}{\theta_0}\) and therefore \(M \subset \mathcal{M}\). On the other hand, + \(\dim \mathcal{M}_\mu = \dim \twisted{(\Sigma^{-1} M)}{\theta_\lambda}_\mu = + \dim \Sigma^{-1} M_{\mu - \lambda} = d\) for all \(\mu \in \lambda + Q\) -- \(\lambda\) standing for some fixed representative of its \(Q\)-coset. Furthermore, given \(u \in \mathcal{U}(\mathfrak{g})_0\) and \(\mu \in \lambda + Q\),