- Commit
- b0340abfb32fdf2b3ad08e6eb13fb08e33e00ac0
- Parent
- e9b03cf14827bf128b52d5ca3aee477dba4d8532
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added a proof the existence of the torsion automorphisms
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added a proof the existence of the torsion automorphisms
1 file changed, 103 insertions, 8 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 111 | 103 | 8 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -343,8 +343,8 @@ \begin{lemma} Let \(S \subset R\) be a multiplicative subset generated by locally \(\operatorname{ad}\)-nilpotent elements -- i.e. elements \(s \in S\) such - that for each \(r \in R\) there \([s, [s, \cdots [s, r]]\cdots] = 0\) for - sufficiently many applications of the commutator. Then \(S\) satisfies Ore's + that for each \(r \in R\) there \(\operatorname{ad}(s)^n r = [s, [s, \cdots + [s, r]]\cdots] = 0\) for sufficiently large \(n\). Then \(S\) satisfies Ore's localization condition. \end{lemma} @@ -470,15 +470,110 @@ \end{align*} is polynomial. - \item If \(\lambda, \mu \in \mathfrak{h}^*\) and \(\theta_\lambda - \Sigma^{-1} V\) is the \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module - \(\Sigma^{-1} V\) twisted by the automorphism \(\theta_\lambda\) then - \(\Sigma^{-1} V_\mu = (\theta_\lambda \Sigma^{-1} V)_{\mu + \lambda}\). - In particular, \(\operatorname{supp} \theta_\lambda \Sigma^{-1} V = - \lambda + Q + \operatorname{supp} V\). + \item If \(\lambda, \mu \in \mathfrak{h}^*\), \(M\) is a \(\Sigma^{-1} + \mathcal{U}(\mathfrak{g})\)-module whose restriction to + \(\mathcal{U}(\mathfrak{g})\) is a weight \(\mathfrak{g}\)-module and + \(\theta_\lambda M\) is the \(\Sigma^{-1} + \mathcal{U}(\mathfrak{g})\)-module \(M\) twisted by the automorphism + \(\theta_\lambda\) then \(M_\mu = (\theta_\lambda M)_{\mu + \lambda}\). + In particular, \(\operatorname{supp} \theta_\lambda M = \lambda + + \operatorname{supp} M\). \end{enumerate} \end{proposition} +\begin{proof} + Since the elements \(F_\beta\), \(\beta \in \Sigma\) commute with one + another, the endomorphisms + \begin{align*} + \theta_{k_1 \beta_1 + \cdots + k_n \beta_n} + : \Sigma^{-1} \mathcal{U}(\mathfrak{g}) & + \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ + r & \mapsto + F_{\beta_1}^{k_1} \cdots F_{\beta_n}^{k_n} + r + F_{\beta_1}^{- k_n} \cdots F_{\beta_n}^{- k_1} + \end{align*} + are well defined for all \(k_1, \ldots, k_n \in \mathbb{Z}\). + + Fix some \(r \in \Sigma^{-1} \mathcal{U}(\mathfrak{g})\). For any \(s \in + (F_\beta)_{\beta \in \Sigma}\) and \(k > 0\) we have \(s^k r = \binom{k}{0} + \operatorname{ad}(s)^0 r s^{k - 0} + \cdots + \binom{k}{k} + \operatorname{ad}(s)^k r s^{k - k}\). Now if we take \(m\) such + \(\operatorname{ad}(F_\beta)^{m + 1} r = 0\) for all \(\beta \in \Sigma\) we + find + \[ + \theta_{k_1 \beta_1 + \cdots + k_n \beta_n}(r) + = \sum_{i_1, \ldots, i_n = 1, \ldots m} + \binom{k_1}{i_1} \cdots \binom{k_n}{i_n} + \operatorname{ad}(F_{\beta_1})^{i_1} \cdots + \operatorname{ad}(F_{\beta_n})^{i_n} + r + F_{\beta_1}^{- i_1} \cdots F_{\beta_n}^{- i_n} + \] + for all \(k_1, \ldots, k_n \in \NN\). + + Since the binomial coeffients \(\binom{x}{k} = \frac{x (x -1) \cdots (x - k + + 1)}{k!}\) can be uniquely extended to polynomial functions in \(x\), we may + in general define + \[ + \theta_\lambda(r) + = \sum_{i_1, \ldots, i_n \ge 0} + \binom{\lambda_1}{i_1} \cdots \binom{\lambda_n}{i_n} + \operatorname{ad}(F_{\beta_1})^{i_1} \cdots + \operatorname{ad}(F_{\beta_n})^{i_n} + r + F_{\beta_1}^{- i_1} \cdots F_{\beta_n}^{- i_n} + \] + for \(\lambda_1, \ldots, \lambda_n \in K\), \(\lambda = \lambda_1 \beta_1 + + \cdots + \lambda_n \beta_n \in \mathfrak{h}^*\) + + It is clear that the \(\theta_\lambda\) are endmorphisms. To see that the + \(\theta_\lambda\) are indeed automorphisms, notice \(\theta_{- k_1 \beta_1 - + \cdots - k_n \beta_n} = \theta_{k_1 \beta_1 + \cdots + k_n \beta_n}^{-1}\). + The uniqueness of the polynomial extensions then implies \(\theta_{- \lambda} + = \theta_\lambda^{-1}\) in general: given \(r \in \Sigma^{-1} + \mathcal{U}(\mathfrak{g})\) the map + \begin{align*} + \mathfrak{h}^* & \to \Sigma^{-1} \mathcal{U}(\mathfrak{g}) \\ + \lambda & \mapsto \theta_\lambda(\theta_{-\lambda}(r)) - r + \end{align*} + is a polynomial extension of the zero map \(\ZZ \beta_1 \oplus \cdots \oplus + \ZZ \beta_n \to \Sigma^{-1} \mathcal{U}(\mathfrak{g})\) and is therefore + identicaly zero. + + Finally, let \(M\) be a \(\Sigma^{-1} \mathcal{U}(\mathfrak{g})\)-module + whose restriction is weight module. If \(m \in M\) then + \[ + m \in (\theta_\lambda M)_{\mu + \lambda} + \iff \theta_\lambda(H) m = (\mu + \lambda)(H) \cdot m + \, \forall H \in \mathfrak{h} + \] + + But + \[ + \begin{split} + \theta_\beta(H) + & = F_\beta H F_\beta^{-1} \\ + & = ([F_\beta, H] + H F_\beta) F_\beta^{-1} \\ + & = (\beta(H) + H) F_\beta F_\beta^{-1} \\ + & = \beta(H) + H + \end{split} + \] + for all \(H \in \mathfrak{h}\) and \(\beta \in \Sigma\). In general, + \(\theta_\lambda(H) = \lambda(H) + H\) for all \(\lambda \in \mathfrak{h}^*\) + and hence + \[ + \begin{split} + m \in (\theta_\lambda M)_{\mu + \lambda} + & \iff (\lambda(H) + H) m = (\mu + \lambda)(H) \cdot m + \; \forall H \in \mathfrak{h} \\ + & \iff H m = \mu(H) \cdot m \; \forall H \in \mathfrak{h} \\ + & \iff m \in M_\mu + \end{split}, + \] + so that \((\theta_\lambda M)_{\mu + \lambda} = M_\mu\). +\end{proof} + \begin{proposition}[Mathieu] There exists a coherent extension \(\mathcal{M}\) of \(V\). \end{proposition}