- Commit
- b51ccc41c38bb5743852bdf55887ad9b7a48273c
- Parent
- b231f997a6098f451bc8f4f606534b9b4da4e55e
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed the notation for the composition series in the proof that the semisimplification is a coherent family
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed the notation for the composition series in the proof that the semisimplification is a coherent family
1 files changed, 25 insertions, 25 deletions
Status | Name | Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 2 files changed | 25 | 25 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -185,15 +185,14 @@ % composition series are conjugate \begin{corollary} Let \(\{\lambda_i\}_i\) be a set of representatives of the \(Q\)-cosets of - \(\mathfrak{h}^*\). - Given a coherent family \(\mathcal{M}\) of degree \(d\) and composition - series \(0 = \mathcal{M}_0[\lambda_i] \subset \mathcal{M}_1[\lambda_i] - \subset \cdots \subset \mathcal{M}_n[\lambda_i] = \mathcal{M}[\lambda_i]\), - the \(\mathfrak{g}\)-module + \(\mathfrak{h}^*\). Given a coherent family \(\mathcal{M}\) of degree \(d\) + and composition series \(0 = \mathcal{M}_{i 0} \subset \mathcal{M}_{i 1} + \subset \cdots \subset \mathcal{M}_{i n_i} = \mathcal{M}[\lambda_i]\), the + \(\mathfrak{g}\)-module \[ \mathcal{M}^{\operatorname{ss}} = \bigoplus_{i j} - \mfrac{\mathcal{M}_{j + 1}[\lambda_i]}{\mathcal{M}_j[\lambda_i]} + \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} \] is also a coherent family of degree \(d\), called \emph{the semisimplification\footnote{This name is due to the fact that @@ -202,29 +201,33 @@ \end{corollary} \begin{proof} - We know form examples~\ref{ex:submod-is-weight-mod} and - \ref{ex:quotient-is-weight-mod} that each quotient \(\mfrac{\mathcal{M}_{j + - 1}[\lambda_i]}{\mathcal{M}_j[\lambda_i]}\) is weight module. Hence + We know from examples~\ref{ex:submod-is-weight-mod} and + \ref{ex:quotient-is-weight-mod} that each quotient \(\mfrac{\mathcal{M}_{i j + + 1}}{\mathcal{M}_{i j}}\) is a weight module. Hence \(\mathcal{M}^{\operatorname{ss}}\) is a weight module. Furtheremore, given - \(\mu \in \mathfrak{h}^*\) + \(\mu \in \lambda_k + Q\) \[ \mathcal{M}_\mu^{\operatorname{ss}} = \bigoplus_{i j} \left( - \mfrac{\mathcal{M}_{j + 1}[\lambda_i]}{\mathcal{M}_j[\lambda_i]} + \mfrac{\mathcal{M}_{i j + 1}}{\mathcal{M}_{i j}} \right)_\mu - \cong \bigoplus_{i j} - \mfrac{\mathcal{M}_{j + 1}[\lambda_i]_\mu} - {\mathcal{M}_j[\lambda_i]_\mu} + = \bigoplus_j + \left( + \mfrac{\mathcal{M}_{k j + 1}}{\mathcal{M}_{k j}} + \right)_\mu + \cong \bigoplus_j + \mfrac{(\mathcal{M}_{k j + 1})_\mu} + {(\mathcal{M}_{k j})_\mu} \] In particular, \[ \dim \mathcal{M}_\mu^{\operatorname{ss}} - = \sum_{i j} - \dim \mathcal{M}_{j + 1}[\lambda_i]_\mu - - \dim \mathcal{M}_j[\lambda_i]_\mu - = \sum_i \dim \mathcal{M}[\lambda_i]_\mu + = \sum_j + \dim (\mathcal{M}_{k j + 1})_\mu + - \dim (\mathcal{M}_{k j})_\mu + = \dim \mathcal{M}[\lambda_k]_\mu = \dim \mathcal{M}_\mu = d \] @@ -233,13 +236,10 @@ number \[ \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu^{\operatorname{ss}}}) - = \sum_{i j} - \operatorname{Tr} - (u\!\restriction_{\mathcal{M}_{j + 1}[\lambda_i]_\mu}) - - \operatorname{Tr} - (u\!\restriction_{\mathcal{M}_j[\lambda_i]_\mu}) - = \sum_{i} - \operatorname{Tr}(u\!\restriction_{\mathcal{M}[\lambda_i]_\mu}) + = \sum_j + \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{k j + 1})_\mu}) + - \operatorname{Tr}(u\!\restriction_{(\mathcal{M}_{k j})_\mu}) + = \operatorname{Tr}(u\!\restriction_{\mathcal{M}[\lambda_k]_\mu}) = \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) \] is polynomial in \(\mu \in \mathfrak{h}^*\).