- Commit
- b84f63fbd75a14f3e68635457e9a8c9a0044c140
- Parent
- 677659b937922a302acc11d081a3d4b7a5e78e0a
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Changed the notation for the centralizer of the Cartan subalgebra in the universal enveloping algebra
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Changed the notation for the centralizer of the Cartan subalgebra in the universal enveloping algebra
1 file changed, 10 insertions, 10 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 20 | 10 | 10 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -64,12 +64,12 @@ \begin{proposition}\label{thm:centralizer-multiplicity} Let \(V\) be a completely reducible weight \(\mathfrak{g}\)-module. Then \(V_\lambda\) is a semisimple - \(C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\)-module for any \(\lambda \in - \mathfrak{h}^*\), where \(C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\) is + \(\mathcal{U}(\mathfrak{g})_0\)-module for any \(\lambda \in + \mathfrak{h}^*\), where \(\mathcal{U}(\mathfrak{g})_0\) is the cetralizer of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\). Moreover, the multiplicity of a given irreducible representation \(W\) of \(\mathfrak{g}\) coincides with the multiplicity of \(W_\lambda\) in - \(V_\lambda\) as a \(C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\)-module, + \(V_\lambda\) as a \(\mathcal{U}(\mathfrak{g})_0\)-module, for any \(\lambda \in \operatorname{supp} V\). \end{proposition} @@ -167,7 +167,7 @@ \item \(\dim \mathcal{M}_\lambda = d\) for \emph{all} \(\lambda \in \mathfrak{h}^*\) \item For any \(u \in \mathcal{U}(\mathfrak{g})\) in the centralizer - \(C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\) of \(\mathfrak{h}\) in + \(\mathcal{U}(\mathfrak{g})_0\) of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\), the map \begin{align*} \mathfrak{h}^* & \to K \\ @@ -187,7 +187,7 @@ \begin{definition} A coherent family \(\mathcal{M}\) called \emph{irreducible} if \(\mathcal{M}_\lambda\) is a simple - \(C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\)-module for some \(\lambda \in + \(\mathcal{U}(\mathfrak{g})_0\)-module for some \(\lambda \in \mathfrak{h}^*\). \end{definition} @@ -275,7 +275,7 @@ = d \] - Likewise, given \(u \in C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\) the + Likewise, given \(u \in \mathcal{U}(\mathfrak{g})_0\) the number \[ \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu^{\operatorname{ss}}}) @@ -613,7 +613,7 @@ \subset \mathcal{M}\). On the other hand, \(\dim \mathcal{M}_\mu = \dim \theta_\lambda \Sigma^{-1} V_\mu = \dim \Sigma^{-1} V_{\mu - \lambda} = d\) for all \(\mu \in \lambda + Q\), \(\lambda \in \Lambda\). Furtheremore, given - \(u \in C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\) and \(\mu \in \lambda + + \(u \in \mathcal{U}(\mathfrak{g})_0\) and \(\mu \in \lambda + Q\), \[ \operatorname{Tr}(u\!\restriction_{\mathcal{M}_\mu}) @@ -652,7 +652,7 @@ multiplicity of a given irreducible \(\mathfrak{g}\)-module \(W\) in \(\mathcal{N}\) is determined by its \emph{trace function} \begin{align*} - \mathfrak{h}^* \times C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h}) & + \mathfrak{h}^* \times \mathcal{U}(\mathfrak{g})_0 & \to K \\ (\lambda, u) & \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda}) @@ -663,7 +663,7 @@ Indeed, given \(\lambda \in \operatorname{supp} V\) the multiplicity of \(W\) in \(\mathcal{N}\) is the same as the multiplicity of \(W_\lambda\) in \(\mathcal{N}_\lambda\), which is determined by the character - \(\chi_{\mathcal{N}_\lambda} : C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h}) + \(\chi_{\mathcal{N}_\lambda} : \mathcal{U}(\mathfrak{g})_0 \to K\) -- see proposition~\ref{thm:centralizer-multiplicity}. We now claim that the trace function of \(\mathcal{N}\) is the same as that of \(\operatorname{Ext}(V)\). Clearly, @@ -671,7 +671,7 @@ = \operatorname{Tr}(u\!\restriction_{V_\lambda}) = \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\) for all \(\lambda \in \operatorname{supp}_{\operatorname{ess}} V\), \(u \in - C_{\mathcal{U}(\mathfrak{g})}(\mathfrak{h})\). Since the essential support of + \mathcal{U}(\mathfrak{g})_0\). Since the essential support of \(V\) is Zariski-dense and the maps \(\lambda \mapsto \operatorname{Tr}(u\!\restriction_{\operatorname{Ext}(V)_\lambda})\) and \(\lambda \mapsto \operatorname{Tr}(u\!\restriction_{\mathcal{N}_\lambda})\)